Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 1, Pages 75–87
DOI: https://doi.org/10.21538/0134-4889-2017-23-1-75-87
(Mi timm1385)
 

This article is cited in 15 scientific papers (total in 15 papers)

On the numerical solution of differential games for neutral-type linear systems

M. I. Gomoyunovab, N. Yu. Lukoyanovba

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: The paper deals with a zero-sum differential game, in which the dynamic of a conflict-controlled system is described by linear functional differential equations of neutral type and the quality index is the sum of two terms: the first term estimates the history of motion of the system realized by the terminal time, and the second term is an integral-quadratic estimation of the corresponding realizations of the players' controls. To calculate the value and construct the optimal control laws in this differential game, we propose an approach based on solving a suitable auxiliary differential game, in which the motion of a conflict-controlled system is described by ordinary differential equations and the quality index contains an estimation of the motion at the terminal time only. To find the value and the saddle point in the auxiliary differential game, we apply the so-called upper convex hull method, which leads to an effective solution in the case under consideration due to the specific structure of the quality index and the geometric constraints on the control actions of the players. The efficiency of the approach is illustrated by an example, and the results of numerical simulations are presented. The constructed optimal control laws are compared with the optimal control procedures with finite-dimensional approximating guides, which were developed by the authors earlier.
Keywords: differential games, neutral-type systems, optimal control strategies, numerical methods.
Funding agency Grant number
Russian Science Foundation 15-11-10018
Received: 08.11.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 301, Issue 1, Pages 44–56
DOI: https://doi.org/10.1134/S0081543818050048
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N70
Language: Russian
Citation: M. I. Gomoyunov, N. Yu. Lukoyanov, “On the numerical solution of differential games for neutral-type linear systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 1, 2017, 75–87; Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 44–56
Citation in format AMSBIB
\Bibitem{GomLuk17}
\by M.~I.~Gomoyunov, N.~Yu.~Lukoyanov
\paper On the numerical solution of differential games for neutral-type linear systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 1
\pages 75--87
\mathnet{http://mi.mathnet.ru/timm1385}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-1-75-87}
\elib{https://elibrary.ru/item.asp?id=28409369}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 301
\issue , suppl. 1
\pages 44--56
\crossref{https://doi.org/10.1134/S0081543818050048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453520500008}
Linking options:
  • https://www.mathnet.ru/eng/timm1385
  • https://www.mathnet.ru/eng/timm/v23/i1/p75
  • This publication is cited in the following 15 articles:
    1. V. N. Ushakov, A. A. Ershov, “K konstruirovaniyu reshenii igrovoi zadachi s fiksirovannym momentom okonchaniya”, Tr. IMM UrO RAN, 30, no. 3, 2024, 255–273  mathnet  crossref  elib
    2. Vladimir N. Ushakov, Aleksandr M. Tarasev, Andrei V. Ushakov, “Minimaksnaya differentsialnaya igra s fiksirovannym momentom okonchaniya”, MTIP, 16:3 (2024), 77–112  mathnet
    3. V. N. Ushakov, A. M. Tarasyev, A. A. Ershov, “A Supplement to Krasovskii's Unification Method in Differential Game Theory”, Dokl. Math., 2024  crossref
    4. V. N. Ushakov, A. V. Ushakov, O. A. Kuvshinov, “Sblizhenie konfliktno upravlyaemykh sistem na konechnom promezhutke vremeni”, Izv. IMI UdGU, 64 (2024), 70–96  mathnet  crossref
    5. V. N. Ushakov, A. M. Tarasyev, A. A. Ershov, “Concerning one supplement to unification method of N.N. Krasovskii in differential games theory”, Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 65–71  mathnet  mathnet  crossref
    6. V. N. Ushakov, A. A. Ershov, “On the Construction of Solutions to a Game Problem with a Fixed End Time”, Proc. Steklov Inst. Math., 327:S1 (2024), S239  crossref
    7. V. N. Ushakov, A. M. Tarasyev, A. V. Ushakov, “Minimax Differential Game with a Fixed End Moment”, Dokl. Math., 110:S2 (2024), S495  crossref
    8. MUHAMMAD AKBAR, RASHID NAWAZ, SUMBAL AHSAN, KOTTAKKARAN SOOPPY NISAR, KAMAL SHAH, EMAD E. MAHMOUD, M. M. ALQARNI, “FRACTIONAL POWER SERIES APPROACH FOR THE SOLUTION OF FRACTIONAL-ORDER INTEGRO-DIFFERENTIAL EQUATIONS”, Fractals, 30:01 (2022)  crossref
    9. M. Gomoyunov, “Solution to a zero-sum differential game with fractional dynamics via approximations”, Dyn. Games Appl., 10:2 (2020), 417–443  crossref  mathscinet  zmath  isi  scopus
    10. Mikhail I. Gomoyunov, “On Representation Formulas for Solutions of Linear Differential Equations with Caputo Fractional Derivatives”, Fract Calc Appl Anal, 23:4 (2020), 1141  crossref
    11. N. Yu. Lukoyanov, A. R. Plaksin, “On the Theory of Positional Differential Games for Neutral-Type Systems”, Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S83–S92  mathnet  crossref  crossref  isi  elib
    12. Nikolai Lukoyanov, Mikhail Gomoyunov, “Differential Games on Minmax of the Positional Quality Index”, Dyn Games Appl, 9:3 (2019), 780  crossref
    13. M. I. Gomoyunov, N. Yu. Lukoyanov, A. R. Plaksin, “Uravneniya Gamiltona-Yakobi v zadachakh dinamicheskoi optimizatsii sistem neitralnogo tipa”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:122 (2018), 268–277  mathnet  crossref  elib
    14. Mikhail Gomoyunov, Anton Plaksin, “On Hamilton-Jacobi equations for neutral-type differential games”, IFAC-PapersOnLine, 51:14 (2018), 171  crossref
    15. A. R. Plaksin, “Ob uravnenii Gamiltona–Yakobi–Aizeksa–Bellmana dlya sistem neitralnogo tipa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:2 (2017), 222–237  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :107
    References:81
    First page:16
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025