Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 1, Pages 43–56
DOI: https://doi.org/10.21538/0134-4889-2017-23-1-43-56
(Mi timm1383)
 

This article is cited in 3 scientific papers (total in 3 papers)

Stability properties of the value function in an infinite horizon optimal control problem

A. L. Bagnoa, A. M. Tarasyevba

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (231 kB) Citations (3)
References:
Abstract: Properties of the value function are examined in an infinite horizon optimal control problem with an integrand index appearing in the quality functional with a discount factor. The properties are analyzed in the case when the payoff functional of the control system includes aquality index represented by an unbounded function. An upper estimate is given for the growth rate of the value function. Necessary and sufficient conditions are obtained to ensure that the value function satisfies the infinitesimal stability properties. The question of coincidence of the value function with the generalized minimax solution of the Hamilton-Jacobi-Bellman-Isaacs equation is discussed. The uniqueness of the corresponding minimax solution is shown. The growth asymptotic behavior of the value function is described for the logarithmic, power, and exponential quality functionals, which arise in economic and financial modeling. The obtained results can be used toconstruct grid approximation methods for the value function as the generalized minimax solution of the Hamilton-Jacobi-Bellman-Isaacs equation. These methods are effective tools in the modeling of economic growth processes.
Keywords: optimal control, Hamilton-Jacobi equation, minimax solution, infinite horizon, value function, stability properties.
Funding agency Grant number
Russian Science Foundation 15-11-10018
Received: 01.11.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 301, Issue 1, Pages 1–14
DOI: https://doi.org/10.1134/S0081543818050012
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49K15, 49L25
Language: Russian
Citation: A. L. Bagno, A. M. Tarasyev, “Stability properties of the value function in an infinite horizon optimal control problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 1, 2017, 43–56; Proc. Steklov Inst. Math. (Suppl.), 301, suppl. 1 (2018), 1–14
Citation in format AMSBIB
\Bibitem{BagTar17}
\by A.~L.~Bagno, A.~M.~Tarasyev
\paper Stability properties of the value function in an infinite horizon optimal control problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 1
\pages 43--56
\mathnet{http://mi.mathnet.ru/timm1383}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-1-43-56}
\elib{https://elibrary.ru/item.asp?id=28409367}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 301
\issue , suppl. 1
\pages 1--14
\crossref{https://doi.org/10.1134/S0081543818050012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453520500006}
Linking options:
  • https://www.mathnet.ru/eng/timm1383
  • https://www.mathnet.ru/eng/timm/v23/i1/p43
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:350
    Full-text PDF :61
    References:61
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024