Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 1, Pages 12–19
DOI: https://doi.org/10.21538/0134-4889-2017-23-1-12-19
(Mi timm1380)
 

This article is cited in 1 scientific paper (total in 1 paper)

A discrete model of the heat exchange process in rotating regenerative air preheaters

A. A. Azamov, M. A. Bekimov

Institute of Mathematics, National University of Uzbekistan named by after Mirzo Ulugbek
Full-text PDF (189 kB) Citations (1)
References:
Abstract: We propose a mathematical model of the heat transfer process in a rotating regenerative air preheater of a thermal power plant. The model is obtained by discretizing the process as a result of averaging both temporal and spatial variables. Making a number of simplifying assumptions, we write a linear discrete system $z(n+1)=Az(n)+r(n)$ of order $2m$ with a monomial $2m\times2m$ matrix $A=(a_{ij})$ in which $a_{ij}=\alpha_i$ for $i=1$, $j=2m$ and for $i=2,\ldots, 2m$, $j=i-1$, whereas all the other elements are zero. Using the relation $A^{2m}=\left(\prod_{i = 1}^{2m}{\alpha _{i}}\right)E$ and the Cauchy formula, we study the stability, periodicity, and convergence of the Cesaro means and other properties. We also consider the identification problem consisting in finding unknown coefficients $\alpha_i$, $i=1,2,\ldots, 2m,$ from the values $z(1), z(2), \ldots, z(2m)$ of the trajectory. Under the assumption $r(n)=r=const$ for $n=1,2,\ldots, 2m$, we transform the problem to the matrix equation $AY=B$, where the square matrix $Y$ is composed of the columns $y_1=t=r-(E-A)z_0$, $y_2=Ay_1+t$, $\ldots$, $y_{2m}=Ay_{2m-1}+t$ and $B=[t-y_2, t-y_3, \ldots, t-y_{2m-1}]$. A recurrent relation is derived for $\det Y$. It is proved that, if $\Delta=\alpha_1\alpha_2\ldots\alpha_m-\alpha_{m+1}\alpha{m+2}\ldots \alpha_{2m}\neq 0$, then $\det Y\neq0$ and $A=BY^{-1}$.
Keywords: heat transfer process, cyclic process, monomial matrix, averaging, linear discrete equation, Cauchy formula, steady state behavior, periodic mode, Ces'aro mean, identification.
Funding agency Grant number
Комитет по координации развития науки и технологий при Кабинете министров Республики Узбекистан Ф4-ФА-Ф014
Received: 21.11.2016
Bibliographic databases:
Document Type: Article
UDC: 621.452
Language: Russian
Citation: A. A. Azamov, M. A. Bekimov, “A discrete model of the heat exchange process in rotating regenerative air preheaters”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 1, 2017, 12–19
Citation in format AMSBIB
\Bibitem{AzaBek17}
\by A.~A.~Azamov, M.~A.~Bekimov
\paper A discrete model of the heat exchange process in rotating regenerative air preheaters
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 1
\pages 12--19
\mathnet{http://mi.mathnet.ru/timm1380}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-1-12-19}
\elib{https://elibrary.ru/item.asp?id=28409364}
Linking options:
  • https://www.mathnet.ru/eng/timm1380
  • https://www.mathnet.ru/eng/timm/v23/i1/p12
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :68
    References:47
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024