Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 4, Pages 136–152
DOI: https://doi.org/10.21538/0134-4889-2016-22-4-136-152
(Mi timm1361)
 

This article is cited in 4 scientific papers (total in 4 papers)

Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm–Liouville operator

D. V. Gorbachev, V. I. Ivanov, R. A. Veprintsev

Tula State University
Full-text PDF (251 kB) Citations (4)
References:
Abstract: For approximations in the space $L^2(\mathbb{R}^d_+)$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm–Liouville operator, we prove the Jackson inequality with exact constant and optimal argument in the modulus of continuity. The multidimensional weight that defines the Sturm–Liouville operator is the product of one-dimensional weights. The one-dimensional weights can be, in particular, power and hyperbolic weights with various parameters. The optimality of the argument in the modulus of continuity is established by means of the multidimensional Gauss quadrature formula over zeros of an eigenfunction of the Sturm–Liouville operator. The obtained results are complete; they generalize a number of known results.
Keywords: Sturm–Liouville operator, $L^2$-space, Fourier transform, Jackson inequality, Gauss quadrature formula.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00308
Ministry of Education and Science of the Russian Federation 5414ГЗ
1.1333.2014К
Received: 30.07.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 300, Issue 1, Pages 97–113
DOI: https://doi.org/10.1134/S0081543818020104
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. V. Gorbachev, V. I. Ivanov, R. A. Veprintsev, “Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm–Liouville operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 136–152; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 97–113
Citation in format AMSBIB
\Bibitem{GorIvaVep16}
\by D.~V.~Gorbachev, V.~I.~Ivanov, R.~A.~Veprintsev
\paper Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm--Liouville operator
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 4
\pages 136--152
\mathnet{http://mi.mathnet.ru/timm1361}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-4-136-152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3590929}
\elib{https://elibrary.ru/item.asp?id=27350133}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 300
\issue , suppl. 1
\pages 97--113
\crossref{https://doi.org/10.1134/S0081543818020104}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433518400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047541863}
Linking options:
  • https://www.mathnet.ru/eng/timm1361
  • https://www.mathnet.ru/eng/timm/v22/i4/p136
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :73
    References:40
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024