Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2006, Volume 12, Number 1, Pages 86–97 (Mi timm136)  

This article is cited in 1 scientific paper (total in 2 paper)

Direct-dual Fejér methods for problems of quadratic programming

I. I. Eremin
Full-text PDF (310 kB) Citations (2)
References:
Abstract: The paper deals with the $S$-technology, which reduces convex problems of quadratic programming to the solution of systems of several linear, and one convex, inequalities. A certain variant of the Fejér method is applied to these systems. In particular, the problem of the constructive separability of convex polyhedral sets by a layer of maximal thickness is solved. This algorithm plays an important role in problems of discriminant analysis.
Received: 17.12.2005
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2006, Volume 253, Issue 1, Pages S83–S95
DOI: https://doi.org/10.1134/S0081543806050075
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: I. I. Eremin, “Direct-dual Fejér methods for problems of quadratic programming”, Dynamical systems: modeling, optimization, and control, Trudy Inst. Mat. i Mekh. UrO RAN, 12, no. 1, 2006, 86–97; Proc. Steklov Inst. Math. (Suppl.), 253, suppl. 1 (2006), S83–S95
Citation in format AMSBIB
\Bibitem{Ere06}
\by I.~I.~Eremin
\paper Direct-dual Fej\'er methods for problems of quadratic programming
\inbook Dynamical systems: modeling, optimization, and control
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2006
\vol 12
\issue 1
\pages 86--97
\mathnet{http://mi.mathnet.ru/timm136}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2246988}
\zmath{https://zbmath.org/?q=an:05203138}
\elib{https://elibrary.ru/item.asp?id=12040721}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2006
\vol 253
\issue , suppl. 1
\pages S83--S95
\crossref{https://doi.org/10.1134/S0081543806050075}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746914772}
Linking options:
  • https://www.mathnet.ru/eng/timm136
  • https://www.mathnet.ru/eng/timm/v12/i1/p86
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :125
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024