Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 3, Pages 265–272
DOI: https://doi.org/10.21538/0134-4889-2016-22-3-265-272
(Mi timm1343)
 

One-sided integral approximation of the characteristic function of an interval by algebraic polynomials

A. Yu. Torgashova

Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
References:
Abstract: We give a solution to the problem of one-sided approximation in $L(-1,1)$ of the characteristic function of the interval $(-\sqrt{{3}/{5}},{2}/{5})$ by fifth-degree algebraic polynomials. The corresponding quadrature formula with positive weights is constructed.
Keywords: algebraic polynomials, one-sided approximation, characteristic function of an interval.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-9356.2016.1
02.A03.21.0006
Received: 29.04.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 296, Issue 1, Pages 228–235
DOI: https://doi.org/10.1134/S0081543817020213
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
MSC: 41A10, 41A29
Language: Russian
Citation: A. Yu. Torgashova, “One-sided integral approximation of the characteristic function of an interval by algebraic polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 3, 2016, 265–272; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 228–235
Citation in format AMSBIB
\Bibitem{Tor16}
\by A.~Yu.~Torgashova
\paper One-sided integral approximation of the characteristic function of an interval by algebraic polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 3
\pages 265--272
\mathnet{http://mi.mathnet.ru/timm1343}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-3-265-272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3555732}
\elib{https://elibrary.ru/item.asp?id=26530902}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 228--235
\crossref{https://doi.org/10.1134/S0081543817020213}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018735782}
Linking options:
  • https://www.mathnet.ru/eng/timm1343
  • https://www.mathnet.ru/eng/timm/v22/i3/p265
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :45
    References:37
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024