Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 3, Pages 226–230
DOI: https://doi.org/10.21538/0134-4889-2016-22-3-226-230
(Mi timm1338)
 

On the $\pi$-length of locally finite $\pi$-separable groups

Z. B. Selyaeva

Kabardino-Balkar State University, Nal'chik
References:
Abstract: We prove the $\pi$-separability of a locally finite group $G$ in which all finite subgroups are $\pi$-separable and their $\pi$-lengths are bounded in total.
Keywords: locally finite groups, $\pi$-separable groups, $\pi$-length of a group.
Received: 23.12.2015
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20F50
Language: Russian
Citation: Z. B. Selyaeva, “On the $\pi$-length of locally finite $\pi$-separable groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 3, 2016, 226–230
Citation in format AMSBIB
\Bibitem{Sel16}
\by Z.~B.~Selyaeva
\paper On the $\pi$-length of locally finite $\pi$-separable groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 3
\pages 226--230
\mathnet{http://mi.mathnet.ru/timm1338}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-3-226-230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3555727}
\elib{https://elibrary.ru/item.asp?id=26530897}
Linking options:
  • https://www.mathnet.ru/eng/timm1338
  • https://www.mathnet.ru/eng/timm/v22/i3/p226
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :67
    References:54
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024