Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 3, Pages 153–159
DOI: https://doi.org/10.21538/0134-4889-2016-22-3-153-159
(Mi timm1330)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computational complexity of the vertex cover problem in the class of planar triangulations

K. S. Kobylkinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (183 kB) Citations (1)
References:
Abstract: We study the computational complexity of the vertex cover problem in the class of planar graphs (planar triangulations) admitting a planar representation whose faces are triangles. It is shown that the problem is strongly NP-hard in the class of 4-connected planar triangulations in which the degrees of all vertices are of order $O(\log n)$, where $n$ is the number of vertices, and in the class of planar 4-connected Delaunay triangulations based on the Minkowski triangular distance. A pair of vertices in such a triangulation is adjacent if and only if there is an equilateral triangle $\nabla(p,\lambda)$ with $p\in\mathbb{R}^2$ and $\lambda>0$ whose interior does not contain triangulation vertices and whose boundary contains this pair of vertices and only it, where $\nabla(p,\lambda)=p+\lambda\nabla=\{x\in\mathbb{R}^2\colon x=p+\lambda a,a\in\nabla\}$; here, $\nabla$ is the equilateral triangle with unit sides such that its barycenter is the origin and one of the vertices belongs to the negative $y$-axis.
Keywords: computational complexity, Delaunay triangulation, Delaunay TD-triangulation.
Funding agency Grant number
Russian Science Foundation 14-11-00109
Received: 02.04.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 299, Issue 1, Pages 106–112
DOI: https://doi.org/10.1134/S0081543817090139
Bibliographic databases:
Document Type: Article
UDC: 519.161
MSC: 68Q25, 05C10, 05C70
Language: Russian
Citation: K. S. Kobylkin, “Computational complexity of the vertex cover problem in the class of planar triangulations”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 3, 2016, 153–159; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 106–112
Citation in format AMSBIB
\Bibitem{Kob16}
\by K.~S.~Kobylkin
\paper Computational complexity of the vertex cover problem in the class of planar triangulations
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 3
\pages 153--159
\mathnet{http://mi.mathnet.ru/timm1330}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-3-153-159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3555719}
\elib{https://elibrary.ru/item.asp?id=26530888}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 299
\issue , suppl. 1
\pages 106--112
\crossref{https://doi.org/10.1134/S0081543817090139}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425144600012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042148162}
Linking options:
  • https://www.mathnet.ru/eng/timm1330
  • https://www.mathnet.ru/eng/timm/v22/i3/p153
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :73
    References:37
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024