Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 3, Pages 101–116
DOI: https://doi.org/10.21538/0134-4889-2016-22-3-101-116
(Mi timm1325)
 

This article is cited in 2 scientific papers (total in 2 papers)

On finite simple classical groups over fields of different characteristics with coinciding prime graphs

M. R. Zinov'evaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (268 kB) Citations (2)
References:
Abstract: Suppose that $G$ is a finite group, $\pi(G)$ is the set of prime divisors of its order, and $\omega(G)$ is the set of orders of its elements. We define a graph on $\pi(G)$ with the following adjacency relation: different vertices $r$ and $s$ from $\pi(G)$ are adjacent if and only if $rs\in \omega(G)$. This graph is called the $\it{Gruenberg-Kegel\, graph }$ for the $\it{prime\, graph }$ of $G$ and is denoted by $GK(G)$. Let $G$ and $G_1$ be two nonisomorphic finite simple groups of Lie type over fields of orders $q$ and $q_1$, respectively, with different characteristics. It is proved that, if $G$ is a classical group of a sufficiently high Lie rank, then the prime graphs of the groups $G$ and $G_1$ may coincide only in one of three cases. It is also proved that, if $G=A_1(q)$ and $G_1$ is a classical group, then the prime graphs of the groups $G$ and $G_1$ coincide only if $\{G,G_1\}$ is equal to $\{A_1(9),A_1(4)\}$, $\{A_1(9),A_1(5)\}$, $\{A_1(7),A_1(8)\}$, or $\{A_1(49),^2A_3(3)\}$.
Keywords: finite simple classical group, prime graph, spectrum.
Funding agency Grant number
Russian Science Foundation 15-11-10025
Received: 10.02.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 297, Issue 1, Pages 223–239
DOI: https://doi.org/10.1134/S0081543817050248
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 05C25, 20D05, 20D06
Language: Russian
Citation: M. R. Zinov'eva, “On finite simple classical groups over fields of different characteristics with coinciding prime graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 3, 2016, 101–116; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 223–239
Citation in format AMSBIB
\Bibitem{Zin16}
\by M.~R.~Zinov'eva
\paper On finite simple classical groups over fields of different characteristics with coinciding prime graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 3
\pages 101--116
\mathnet{http://mi.mathnet.ru/timm1325}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-3-101-116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3555714}
\elib{https://elibrary.ru/item.asp?id=26530883}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 297
\issue , suppl. 1
\pages 223--239
\crossref{https://doi.org/10.1134/S0081543817050248}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410252500024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029230117}
Linking options:
  • https://www.mathnet.ru/eng/timm1325
  • https://www.mathnet.ru/eng/timm/v22/i3/p101
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024