Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 2, Pages 292–303
DOI: https://doi.org/10.21538/0134-4889-2016-22-2-292-303
(Mi timm1314)
 

This article is cited in 12 scientific papers (total in 12 papers)

Approximability of the optimal routing problem in finite-dimensional Euclidean spaces

M. Yu. Khachaiabc, R. D. Dubininc

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Omsk State Technical University
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: The capacitated vehicle routing problem (CVRP) is a classical combinatorial optimization problem with a wide range of applications in operations research. Since the CVRP is NP-hard even in a finite-dimensional Euclidean space, special attention is traditionally paid to the issues of its approximability. A major part of the known results concerning approximation algorithms and polynomial-time approximation schemes (PTAS) for this problem are obtained for its particular instance on the Euclidean plane. In the present paper we show that the approach to the development of a PTAS in the planar problem with a single depot proposed by Haimovich and Rinnooy Kan in 1985 can be effectively applied in a more general case, for example, in spaces of arbitrary fixed dimension and for an arbitrary number of depots.
Keywords: optimal routing, CVRP, approximability, EPTAS.
Funding agency Grant number
Russian Science Foundation 14-11-00109
Received: 08.04.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 297, Issue 1, Pages 117–128
DOI: https://doi.org/10.1134/S0081543817050133
Bibliographic databases:
Document Type: Article
UDC: 518.6
MSC: 90C27, 90C59, 90B06
Language: Russian
Citation: M. Yu. Khachai, R. D. Dubinin, “Approximability of the optimal routing problem in finite-dimensional Euclidean spaces”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 292–303; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 117–128
Citation in format AMSBIB
\Bibitem{KhaDub16}
\by M.~Yu.~Khachai, R.~D.~Dubinin
\paper Approximability of the optimal routing problem in finite-dimensional Euclidean spaces
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 292--303
\mathnet{http://mi.mathnet.ru/timm1314}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-292-303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559185}
\elib{https://elibrary.ru/item.asp?id=26040846}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 297
\issue , suppl. 1
\pages 117--128
\crossref{https://doi.org/10.1134/S0081543817050133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410252500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029208692}
Linking options:
  • https://www.mathnet.ru/eng/timm1314
  • https://www.mathnet.ru/eng/timm/v22/i2/p292
  • This publication is cited in the following 12 articles:
    1. Emre Ergüven, Faruk Polat, “Relative distances approach for multi-traveling salesmen problem”, Knowledge-Based Systems, 300 (2024), 112160  crossref
    2. M. Khachay, Yu. Ogorodnikov, D. Khachay, “Efficient approximation of the metric CVRP in spaces of fixed doubling dimension”, J. Glob. Optim., 80:3 (2021), 679–710  crossref  mathscinet  isi  scopus
    3. Yu. Yu. Ogorodnikov, M. Yu. Khachay, “Approximation of the capacitated vehicle routing problem with a limited number of routes in metric spaces of fixed doubling dimension”, Comput. Math. Math. Phys., 61:7 (2021), 1194–1206  mathnet  mathnet  crossref  crossref  isi  scopus
    4. M. Khachay, Yu. Ogorodnikov, “Ptas for the euclidean capacitated vehicle routing problem with time windows”, Learning and Intelligent Optimization, Lion, Lecture Notes in Computer Science, 11968, eds. N. Matsatsinis, Y. Marinakis, P. Pardalos, Springer, 2020, 224–230  crossref  isi  scopus
    5. Michael Khachay, Yuri Ogorodnikov, Lecture Notes in Computer Science, 12096, Learning and Intelligent Optimization, 2020, 27  crossref
    6. Michael Khachay, Yuri Ogorodnikov, Communications in Computer and Information Science, 1145, Optimization and Applications, 2020, 415  crossref
    7. Michael Khachay, Yuri Ogorodnikov, Daniel Khachay, Lecture Notes in Computer Science, 12095, Mathematical Optimization Theory and Operations Research, 2020, 49  crossref
    8. M. Khachay, Yu. Ogorodnikov, “Towards an efficient approximability for the euclidean capacitated vehicle routing problem with time windows and multiple depots”, IFAC PAPERSONLINE, 52:13 (2019), 2644–2649  crossref  isi  scopus
    9. M. Khachay, Yu. Ogorodnikov, “Approximation scheme for the capacitated vehicle routing problem with time windows and non-uniform demand”, Mathematical Optimization Theory and Operations Research, Lecture Notes in Computer Science, 11548, eds. M. Khachay, Y. Kochetov, P. Pardalos, Springer, 2019, 309–327  crossref  mathscinet  zmath  isi  scopus
    10. Michael Khachay, Yuri Ogorodnikov, Communications in Computer and Information Science, 974, Optimization and Applications, 2019, 155  crossref
    11. V. A. Goloveshkin, G. N. Zhukova, M. V. Ulyanov, M. I. Fomichev, “Probabilistic prediction of the complexity of traveling salesman problems based on approximating the complexity distribution from experimental data”, Autom. Remote Control, 79:7 (2018), 1296–1310  mathnet  crossref  isi  elib
    12. Michael Khachay, Yuri Ogorodnikov, Lecture Notes in Computer Science, 11179, Analysis of Images, Social Networks and Texts, 2018, 318  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:332
    Full-text PDF :75
    References:59
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025