Citation:
V. I. Arnol'd, “Statistics and classification of topologies of periodic functions and trigonometric polynomials”, Dynamical systems: modeling, optimization, and control, Trudy Inst. Mat. i Mekh. UrO RAN, 12, no. 1, 2006, 15–24; Proc. Steklov Inst. Math. (Suppl.), 253, suppl. 1 (2006), S13–S23
\Bibitem{Arn06}
\by V.~I.~Arnol'd
\paper Statistics and classification of topologies of periodic functions and trigonometric polynomials
\inbook Dynamical systems: modeling, optimization, and control
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2006
\vol 12
\issue 1
\pages 15--24
\mathnet{http://mi.mathnet.ru/timm131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2246984}
\zmath{https://zbmath.org/?q=an:1130.58008}
\elib{https://elibrary.ru/item.asp?id=12040716}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2006
\vol 253
\issue , suppl. 1
\pages S13--S23
\crossref{https://doi.org/10.1134/S0081543806050038}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746895190}
Linking options:
https://www.mathnet.ru/eng/timm131
https://www.mathnet.ru/eng/timm/v12/i1/p15
This publication is cited in the following 8 articles:
Nicolaescu L.I., “Critical Points of Multidimensional Random Fourier Series: Central Limits”, Bernoulli, 24:2 (2018), 1128–1170
Batista E.B., Costa J.C.F., Meza-Sarmiento I.S., “Topological Classification of Circle-Valued Simple Morse-Bott Functions”, J. Singul., 17 (2018), 388–402
Juan M. Bello‐Rivas, Ron Elber, “Simulations of thermodynamics and kinetics on rough energy landscapes with milestoning”, J Comput Chem, 37:6 (2016), 602
V. I. Arnold, “Topological classification of Morse polynomials”, Proc. Steklov Inst. Math., 268 (2010), 32–48
Proc. Steklov Inst. Math., 267 (2009), 205–216
“Vladimir Igorevich Arnol'd (on his 70th birthday)”, Russian Math. Surveys, 62:5 (2007), 1021–1030
V. I. Arnol'd, “Topological Classification of Trigonometric Polynomials Related to the Affine Coxeter Group ˜A2”, Proc. Steklov Inst. Math., 258 (2007), 3–12
Arnold V.I., “Topological classification of Morse functions and generalisations of Hilbert's 16-th problem”, Math. Phys. Anal. Geom., 10:3 (2007), 227–236