Abstract:
We consider a nonlinear model of motion of a solid body with deficiency of control parameters. The model contains a disturbance parameter. We propose an open-loop control that takes the system from a given initial state to a given terminal state. Results of numerical calculations are presented for the dynamics of the components of the phase vector and of the controls.
Citation:
N. L. Grigorenko, A. E. Rumyantsev, “Terminal control of a nonlinear process under disturbances”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 113–121; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 108–116
\Bibitem{GriRum16}
\by N.~L.~Grigorenko, A.~E.~Rumyantsev
\paper Terminal control of a nonlinear process under disturbances
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 113--121
\mathnet{http://mi.mathnet.ru/timm1296}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-113-121}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559167}
\elib{https://elibrary.ru/item.asp?id=26040822}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 297
\issue , suppl. 1
\pages 108--116
\crossref{https://doi.org/10.1134/S0081543817050121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410252500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029221427}
Linking options:
https://www.mathnet.ru/eng/timm1296
https://www.mathnet.ru/eng/timm/v22/i2/p113
This publication is cited in the following 3 articles:
P. G. Surkov, “Package guidance problem for a fractional-order system”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S212–S230
P. G. Surkov, “The problem of package guidance under incomplete information and integral signal of observation”, Sib. Electron. Math. Rep., 15 (2018), 373–388
P. G. Surkov, “On the problem of package guidance for nonlinear control system via fuzzy approach”, IFAC-PapersOnLine, 51:32 (2018), 733–738