Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 2, Pages 79–90
DOI: https://doi.org/10.21538/0134-4889-2016-22-2-79-90
(Mi timm1293)
 

This article is cited in 2 scientific papers (total in 2 papers)

Solution of the deconvolution problem in the general statement

V. V. Vasinab, G. G. Skorika

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (206 kB) Citations (2)
References:
Abstract: The deconvolution problem, which arises in the description of well testing processes, is formulated in the form of a Volterra equation of the first kind with discontinuous input data (the kernel is the flow rate and the right-hand side is the pressure change) characterized by large measurement errors. In addition, the solution of this equation has multiscale behavior in its domain. In this situation, the traditional solution algorithms for Volterra equations, as a rule, do not provide satisfactory results. To solve the problem, we use the variational regularization methods and construct a function basis (a system of exponents), which allow us to take into account in the algorithms all a priori constraints known for the desired solution. As a result, we form a family of approximate solutions that satisfies the conditions of smoothness end exactness required for the interpretation of well tests. For the constructed regularizing algorithms, we formulate convergence theorems and describe the details of numerical implementation.
Keywords: deconvolution problem, well test, Tikhonov regularization, method of quasisolutions, system of exponents, a priori constraints.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-00629
Received: 15.01.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 297, Issue 1, Pages 211–222
DOI: https://doi.org/10.1134/S0081543817050236
Bibliographic databases:
Document Type: Article
UDC: 517.983.54
MSC: 45D05, 65J20, 65R20
Language: Russian
Citation: V. V. Vasin, G. G. Skorik, “Solution of the deconvolution problem in the general statement”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 79–90; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 211–222
Citation in format AMSBIB
\Bibitem{VasSko16}
\by V.~V.~Vasin, G.~G.~Skorik
\paper Solution of the deconvolution problem in the general statement
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 79--90
\mathnet{http://mi.mathnet.ru/timm1293}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-79-90}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559164}
\elib{https://elibrary.ru/item.asp?id=26040817}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 297
\issue , suppl. 1
\pages 211--222
\crossref{https://doi.org/10.1134/S0081543817050236}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410252500023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029220142}
Linking options:
  • https://www.mathnet.ru/eng/timm1293
  • https://www.mathnet.ru/eng/timm/v22/i2/p79
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :118
    References:57
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024