Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 1, Pages 294–309 (Mi timm1282)  

This article is cited in 14 scientific papers (total in 14 papers)

Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature

A. G. Chentsovab

a Institute of Radio Engineering and Information Technologies, Ural Federal University, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: A reachability problem with constraints of asymptotic nature is considered in a topological space. The properties of a rather general procedure that defines an extension of the problem are studied. In particular, we specify a rule that transforms an arbitrary extension scheme (a compactifier) to a similar scheme with the property that the continuous extension of the objective operator of the reachability problem is homeomorphic. We show how to use this rule in the case when the extension is realized in the ultrafilter space of a broadly understood measurable space. This version is then made more specific for the case of an objective operator defined on a nondegenerate interval of the real line.
Keywords: attraction set, topological space, ultrafilter, factor space.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00505
16-01-00649
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 296, Issue 1, Pages 102–118
DOI: https://doi.org/10.1134/S0081543817020109
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. G. Chentsov, “Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 294–309; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 102–118
Citation in format AMSBIB
\Bibitem{Che16}
\by A.~G.~Chentsov
\paper Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 1
\pages 294--309
\mathnet{http://mi.mathnet.ru/timm1282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3497206}
\elib{https://elibrary.ru/item.asp?id=25655621}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 102--118
\crossref{https://doi.org/10.1134/S0081543817020109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018753097}
Linking options:
  • https://www.mathnet.ru/eng/timm1282
  • https://www.mathnet.ru/eng/timm/v22/i1/p294
  • This publication is cited in the following 14 articles:
    1. A. G. Chentsov, “Nekotorye voprosy, svyazannye s realizatsiei mnozhestv prityazheniya s tochnostyu do napered zadannoi okrestnosti”, Vestnik rossiiskikh universitetov. Matematika, 29:147 (2024), 352–376  mathnet  crossref
    2. A. G. Chentsov, “Some Properties of Ultrafilters Related to Their Use As Generalized Elements”, Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S53–S68  mathnet  crossref  crossref  mathscinet  elib
    3. A. G. Chentsov, “O topologicheskikh svoistvakh mnozhestva prityazheniya v prostranstve ultrafiltrov”, Vestnik rossiiskikh universitetov. Matematika, 28:143 (2023), 335–356  mathnet  crossref
    4. A. G. Chentsov, “Stseplennost semeistv mnozhestv, superkompaktnost i nekotorye obobscheniya”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g.  Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 208, VINITI RAN, M., 2022, 79–90  mathnet  crossref
    5. A. G. Chentsov, A. N. Sesekin, “Relaksatsiya zadachi o dostizhimosti dlya lineinoi upravlyaemoi sistemy neitralnogo tipa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:1 (2021), 70–88  mathnet  crossref
    6. A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy”, Tr. IMM UrO RAN, 26, no. 1, 2020, 274–292  mathnet  crossref  elib
    7. A. G. Chentsov, “Maksimalnye stseplennye sistemy i ultrafiltry: osnovnye predstavleniya i topologicheskie svoistva”, Vestnik rossiiskikh universitetov. Matematika, 25:129 (2020), 68–84  mathnet  crossref
    8. A. G. Chentsov, “Ultrafiltry kak dopustimye obobschennye elementy v usloviyakh ogranichenii asimptoticheskogo kharaktera”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:2 (2020), 312–323  mathnet  crossref
    9. A. G. Chentsov, “O superkompaktnosti prostranstva ultrafiltrov s topologiei volmenovskogo tipa”, Izv. IMI UdGU, 54 (2019), 74–101  mathnet  crossref  elib
    10. A. G. Chentsov, “Some properties of ultrafilters of widely understood measurable spaces”, Dokl. Math., 99:3 (2019), 255–259  crossref  zmath  isi  scopus
    11. A. G. Chentsov, E. G. Pytkeev, “Constraints of asymptotic nature and attainability problems”, Vestn. Udmurt. Univ.-Mat. Mekh. Kompyuternye Nauk., 29:4 (2019), 569–582  crossref  isi  scopus
    12. E. G. Pytkeev, A. G. Chentsov, “Volmenovskii kompaktifikator i ego primenenie dlya issledovaniya abstraktnoi zadachi o dostizhimosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:2 (2018), 199–212  mathnet  crossref  elib
    13. A. G. Chentsov, “Maximal linked systems and ultrafilters in abstract attainability problem”, IFAC-PapersOnLine, 51:32 (2018), 239–244  crossref  isi  scopus
    14. A. G. Chentsov, “Superrasshirenie kak bitopologicheskoe prostranstvo”, Izv. IMI UdGU, 49 (2017), 55–79  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :110
    References:114
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025