Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 1, Pages 52–60 (Mi timm1259)  

A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints

A. R. Danilinab

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: We consider an optimal control problem for solutions of a boundary value problem on an interval for a second-order ordinary differential equation with a small parameter at the second derivative. The control is scalar and satisfies geometric constraints. Expansions of a solution to this problem up to any power of the small parameter are constructed and validated.
Keywords: optimal control, asymptotic expansion, singular perturbation problems, small parameter.
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 296, Issue 1, Pages 119–127
DOI: https://doi.org/10.1134/S0081543817020110
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. R. Danilin, “A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 52–60; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 119–127
Citation in format AMSBIB
\Bibitem{Dan16}
\by A.~R.~Danilin
\paper A complete asymptotic expansion of a solution to a singular perturbation optimal control problem on an interval with geometric constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 1
\pages 52--60
\mathnet{http://mi.mathnet.ru/timm1259}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3497183}
\elib{https://elibrary.ru/item.asp?id=25655595}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 119--127
\crossref{https://doi.org/10.1134/S0081543817020110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018754652}
Linking options:
  • https://www.mathnet.ru/eng/timm1259
  • https://www.mathnet.ru/eng/timm/v22/i1/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :78
    References:87
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024