Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 4, Pages 282–291 (Mi timm1250)  

This article is cited in 4 scientific papers (total in 4 papers)

Almost Lie nilpotent non-prime varieties of associative algebras

O. B. Finogenova

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (192 kB) Citations (4)
References:
Abstract: A variety of associative algebras is called Lie nilpotent if it satisfies the identity $[\cdots[[x_1,x_2],\ldots,x_n]=0$ for some positive integer $n$, where $[x,y] = xy-yx$. We study almost Lie nilpotent varieties, i.e., minimal elements in the set of all varieties that are not Lie nilpotent. We describe all almost Lie nilpotent varieties of algebras over a field of positive characteristic, both finite and infinite, in the cases when the ideals of identities of these varieties are nonprime in the class of all $T$-ideals.
Keywords: variety of associative algebras, identities of the associated Lie algebra, Lie nilpotency, Engel property.
Received: 01.08.2015
Bibliographic databases:
Document Type: Article
UDC: 512.552.4
Language: Russian
Citation: O. B. Finogenova, “Almost Lie nilpotent non-prime varieties of associative algebras”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 4, 2015, 282–291
Citation in format AMSBIB
\Bibitem{Fin15}
\by O.~B.~Finogenova
\paper Almost Lie nilpotent non-prime varieties of associative algebras
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 4
\pages 282--291
\mathnet{http://mi.mathnet.ru/timm1250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468451}
\elib{https://elibrary.ru/item.asp?id=25301006}
Linking options:
  • https://www.mathnet.ru/eng/timm1250
  • https://www.mathnet.ru/eng/timm/v21/i4/p282
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :43
    References:35
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024