Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 4, Pages 212–222 (Mi timm1242)  

Interpolation by functions from a Sobolev space with minimum $L_p$-norm of the Laplace operator

S. I. Novikovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
References:
Abstract: We consider an interpolation problem with minimum value of the $L_p$-norm ($1\leq p<\infty$) of the Laplace operator of interpolants for a class of interpolated sequences that are bounded in the $l_p$-norm. The data are interpolated at nodes of the grid formed by points from $\mathbb{R}^n$ with integer coordinates. It is proved that, if $1\leq p$<$n/2$, then the $L_p$-norm of the Laplace operator of the interpolant can be arbitrarily small for any sequence that is interpolated. Two-sided estimates for the $L_2$-norm of the Laplace operator of the best interpolant are found for the case $n=2$.
Keywords: interpolation, Laplace operator, Sobolev space, embedding.
Received: 21.01.2015
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. I. Novikov, “Interpolation by functions from a Sobolev space with minimum $L_p$-norm of the Laplace operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 4, 2015, 212–222
Citation in format AMSBIB
\Bibitem{Nov15}
\by S.~I.~Novikov
\paper Interpolation by functions from a Sobolev space with minimum $L_p$-norm of the Laplace operator
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 4
\pages 212--222
\mathnet{http://mi.mathnet.ru/timm1242}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468443}
\elib{https://elibrary.ru/item.asp?id=25300998}
Linking options:
  • https://www.mathnet.ru/eng/timm1242
  • https://www.mathnet.ru/eng/timm/v21/i4/p212
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024