|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 4, Pages 78–94
(Mi timm1231)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness
Sh. A. Balgimbaeva, T. I. Smirnov Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan
Abstract:
Order-exact bounds are obtained for Fourier widths of the Nikol'skii-Besov classes $\mathrm{SB}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ and Triebel-Lizorkin classes $\mathrm{SF}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ of functions with a given majorant $\Omega$ for the mixed modulus of smoothness of order $l$ in the space $L_q(\mathbb{T}^d)$ for all relations between the parameters $p$, $q$, and $\theta$ under some conditions on $\Omega$. The upper bounds follow from order-exact bounds for approximations of the classes $\mathrm{SB}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ and $\mathrm{SF}_{p\theta}^{\Omega,l} (\mathbb{T}^d)$ by special partial sums of Fourier series in the multiple system $\Psi_d$ of periodized Meyer wavelets.
Keywords:
fourier width, mixed modulus of smoothness, function spaces, wavelet system.
Received: 20.07.2015
Citation:
Sh. A. Balgimbaeva, T. I. Smirnov, “Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 4, 2015, 78–94
Linking options:
https://www.mathnet.ru/eng/timm1231 https://www.mathnet.ru/eng/timm/v21/i4/p78
|
Statistics & downloads: |
Abstract page: | 273 | Full-text PDF : | 75 | References: | 51 | First page: | 8 |
|