Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 4, Pages 14–19 (Mi timm1225)  

This article is cited in 3 scientific papers (total in 3 papers)

Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values

R. R. Akopianab

a Ozersk Technology Institute
b Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
Full-text PDF (149 kB) Citations (3)
References:
Abstract: We study the problem of optimal recovery of a function analytic in a doubly connected domain from its approximately given values on one of the two components of the boundary. An optimal recovery method is obtained in the case when the error is an integer power of the modulus of the domain.
Keywords: optimal recovery, analytic functions, doubly connected domain.
Received: 15.02.2015
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 296, Issue 1, Pages 13–18
DOI: https://doi.org/10.1134/S008154381702002X
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: R. R. Akopian, “Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 4, 2015, 14–19; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 13–18
Citation in format AMSBIB
\Bibitem{Ako15}
\by R.~R.~Akopian
\paper Optimal recovery of an analytic function in a doubly connected domain from its approximately given boundary values
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 4
\pages 14--19
\mathnet{http://mi.mathnet.ru/timm1225}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468426}
\elib{https://elibrary.ru/item.asp?id=25300980}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 13--18
\crossref{https://doi.org/10.1134/S008154381702002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000002}
Linking options:
  • https://www.mathnet.ru/eng/timm1225
  • https://www.mathnet.ru/eng/timm/v21/i4/p14
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :77
    References:58
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024