Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 3, Pages 309–317 (Mi timm1222)  

This article is cited in 20 scientific papers (total in 20 papers)

An exact algorithm with linear complexity for a problem of visiting megalopolises

A. G. Chentsovab, M. Yu. Khachaiba, M. Yu. Khachaib

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: A problem of visiting megalopolises with a fixed number of “entrances” and precedence relations defined in a special way is studied. The problem is a natural generalization of the classical traveling salesman problem. For finding an optimal solution we give a dynamic programming scheme, which is equivalent to a method of finding a shortest path in an appropriate acyclic oriented weighted graph. We justify conditions under which the complexity of the algorithm depends on the number of megalopolises polynomially, in particular, linearly.
Keywords: traveling salesman problem, np-hard problem, dynamic programming, precedence relations.
Received: 11.05.2015
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 295, Issue 1, Pages 38–46
DOI: https://doi.org/10.1134/S0081543816090054
Bibliographic databases:
Document Type: Article
UDC: 519.16 + 519.85
Language: Russian
Citation: A. G. Chentsov, M. Yu. Khachai, M. Yu. Khachai, “An exact algorithm with linear complexity for a problem of visiting megalopolises”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 309–317; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 38–46
Citation in format AMSBIB
\Bibitem{CheKhaKha15}
\by A.~G.~Chentsov, M.~Yu.~Khachai, M.~Yu.~Khachai
\paper An exact algorithm with linear complexity for a problem of visiting megalopolises
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 309--317
\mathnet{http://mi.mathnet.ru/timm1222}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468113}
\elib{https://elibrary.ru/item.asp?id=24156736}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 295
\issue , suppl. 1
\pages 38--46
\crossref{https://doi.org/10.1134/S0081543816090054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000394441400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010430812}
Linking options:
  • https://www.mathnet.ru/eng/timm1222
  • https://www.mathnet.ru/eng/timm/v21/i3/p309
  • This publication is cited in the following 20 articles:
    1. Yu. Yu. Ogorodnikov, R. A. Rudakov, D. M. Khachai, M. Yu. Khachai, “Fault-Tolerant Families of Production Plans: Mathematical Model, Computational Complexity, and Branch-and-Bound Algorithms”, Comput. Math. and Math. Phys., 64:6 (2024), 1193  crossref
    2. Daniil Khachai, Olga Battaïa, Alexander Petunin, Michael Khachay, “Discrete cutting path problems: a general solution framework and industrial applications”, International Journal of Production Research, 2024, 1  crossref
    3. Roman Rudakov, Yuri Ogorodnikov, Michael Khachay, Lecture Notes in Computer Science, 14766, Mathematical Optimization Theory and Operations Research, 2024, 170  crossref
    4. Yu. Yu. Ogorodnikov, R. A. Rudakov, D. M. Khachai, M. Yu. Khachay, “Fault-tolerant families of production plans: mathematical model, computational complexity, and branch-and-bound algorithms”, Comput. Math. Math. Phys., 64:6 (2024), 1193–1210  mathnet  mathnet  crossref  crossref
    5. Daniil Khachai, Ruslan Sadykov, Olga Battaia, Michael Khachay, “Precedence constrained generalized traveling salesman problem: Polyhedral study, formulations, and branch-and-cut algorithm”, European Journal of Operational Research, 309:2 (2023), 488  crossref
    6. Roman Rudakov, Daniil Khachai, Yuri Ogorodnikov, Michael Khachay, Lecture Notes in Computer Science, 14395, Optimization and Applications, 2023, 174  crossref
    7. M. Yu. Khachay, E. D. Neznakhina, K. V. Ryzhenko, “Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S140–S155  mathnet  crossref  crossref  mathscinet  isi  elib
    8. A. O. Zakharov, Yu. V. Kovalenko, “Suzhenie mnozhestva Pareto spetsialnoi struktury v diskretnykh zadachakh s dvumya kriteriyami”, Diskretn. analiz i issled. oper., 28:4 (2021), 90–116  mathnet  crossref
    9. Michael Khachay, Stanislav Ukolov, Alexander Petunin, Lecture Notes in Computer Science, 13078, Optimization and Applications, 2021, 136  crossref
    10. Anastasiia Tavaeva, Aleksandr Petunin, Efim Polishchuk, S. Bratan, S. Roshchupkin, “Application of Multi-Contour Cutting in Algorithms for Solving the Cutting Path Problem”, MATEC Web Conf., 346 (2021), 01015  crossref
    11. Alexander Petunin, Alexander Khalyavka, Michael Khachay, Andrei Kudriavtsev, Pavel Chentsov, Efim Polishchuk, Stanislav Ukolov, Lecture Notes in Computer Science, 12665, Pattern Recognition. ICPR International Workshops and Challenges, 2021, 227  crossref
    12. Alexander Petunin, Efim Polishchuk, Stanislav Ukolov, Communications in Computer and Information Science, 1340, Advances in Optimization and Applications, 2020, 70  crossref
    13. Michael Khachay, Katherine Neznakhina, “Complexity and approximability of the Euclidean generalized traveling salesman problem in grid clusters”, Ann Math Artif Intell, 88:1-3 (2020), 53  crossref
    14. Michael Khachay, Andrei Kudriavtsev, Alexander Petunin, Lecture Notes in Computer Science, 12422, Optimization and Applications, 2020, 196  crossref
    15. A.A. Petunin, E.G. Polishchuk, S.S. Ukolov, “On the new Algorithm for Solving Continuous Cutting Problem”, IFAC-PapersOnLine, 52:13 (2019), 2320  crossref
    16. M. Khachay, K. Neznakhina, “Polynomial time solvable subclass of the generalized traveling salesman problem on grid clusters”, Analysis of Images, Social Networks and Texts, AIST 2017, Lecture Notes in Computer Science, 10716, eds. W. van der Aalst, D. Ignatov, M. Khachay, S. Kuznetsov, V. Lempitsky, I. Lomazova, N. Loukachevitch, A. Napoli, A. Panchenko, P. Pardalos, A. Savchenko, S. Wasserman, Springer, 2018, 346–355  crossref  mathscinet  isi  scopus
    17. Alexander G. Chentsov, Alexey M. Grigoriev, Alexey A. Chentsov, “Optimizing the starting point in a precedence constrained routing problem with complicated travel cost functions”, Ural Math. J., 4:2 (2018), 43–55  mathnet  crossref  mathscinet
    18. Michael Khachay, Katherine Neznakhina, Communications in Computer and Information Science, 871, Optimization Problems and Their Applications, 2018, 68  crossref
    19. Michael Khachay, Katherine Neznakhina, Lecture Notes in Computer Science, 10627, Combinatorial Optimization and Applications, 2017, 265  crossref
    20. M. Yu. Khachai, E. D. Neznakhina, “Approximation Schemes for the Generalized Traveling Salesman Problem”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 97–105  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :100
    References:78
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025