Abstract:
A problem of visiting megalopolises with a fixed number of “entrances” and precedence relations defined in a special way is studied. The problem is a natural generalization of the classical traveling salesman problem. For finding an optimal solution we give a dynamic programming scheme, which is equivalent to a method of finding a shortest path in an appropriate acyclic oriented weighted graph. We justify conditions under which the complexity of the algorithm depends on the number of megalopolises polynomially, in particular, linearly.
Citation:
A. G. Chentsov, M. Yu. Khachai, M. Yu. Khachai, “An exact algorithm with linear complexity for a problem of visiting megalopolises”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 309–317; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 38–46
\Bibitem{CheKhaKha15}
\by A.~G.~Chentsov, M.~Yu.~Khachai, M.~Yu.~Khachai
\paper An exact algorithm with linear complexity for a problem of visiting megalopolises
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 309--317
\mathnet{http://mi.mathnet.ru/timm1222}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468113}
\elib{https://elibrary.ru/item.asp?id=24156736}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 295
\issue , suppl. 1
\pages 38--46
\crossref{https://doi.org/10.1134/S0081543816090054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000394441400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85010430812}
Linking options:
https://www.mathnet.ru/eng/timm1222
https://www.mathnet.ru/eng/timm/v21/i3/p309
This publication is cited in the following 20 articles:
Yu. Yu. Ogorodnikov, R. A. Rudakov, D. M. Khachai, M. Yu. Khachai, “Fault-Tolerant Families of Production Plans: Mathematical Model, Computational Complexity, and Branch-and-Bound Algorithms”, Comput. Math. and Math. Phys., 64:6 (2024), 1193
Daniil Khachai, Olga Battaïa, Alexander Petunin, Michael Khachay, “Discrete cutting path problems: a general solution framework and industrial applications”, International Journal of Production Research, 2024, 1
Roman Rudakov, Yuri Ogorodnikov, Michael Khachay, Lecture Notes in Computer Science, 14766, Mathematical Optimization Theory and Operations Research, 2024, 170
Yu. Yu. Ogorodnikov, R. A. Rudakov, D. M. Khachai, M. Yu. Khachay, “Fault-tolerant families of production plans: mathematical model, computational complexity, and branch-and-bound algorithms”, Comput. Math. Math. Phys., 64:6 (2024), 1193–1210
Daniil Khachai, Ruslan Sadykov, Olga Battaia, Michael Khachay, “Precedence constrained generalized traveling salesman problem: Polyhedral study, formulations, and branch-and-cut algorithm”, European Journal of Operational Research, 309:2 (2023), 488
Roman Rudakov, Daniil Khachai, Yuri Ogorodnikov, Michael Khachay, Lecture Notes in Computer Science, 14395, Optimization and Applications, 2023, 174
M. Yu. Khachay, E. D. Neznakhina, K. V. Ryzhenko, “Constant-Factor Approximation Algorithms for a Series of Combinatorial Routing Problems Based on the Reduction to the Asymmetric Traveling Salesman Problem”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S140–S155
A. O. Zakharov, Yu. V. Kovalenko, “Suzhenie mnozhestva Pareto spetsialnoi struktury v diskretnykh zadachakh s dvumya kriteriyami”, Diskretn. analiz i issled. oper., 28:4 (2021), 90–116
Michael Khachay, Stanislav Ukolov, Alexander Petunin, Lecture Notes in Computer Science, 13078, Optimization and Applications, 2021, 136
Anastasiia Tavaeva, Aleksandr Petunin, Efim Polishchuk, S. Bratan, S. Roshchupkin, “Application of Multi-Contour Cutting in Algorithms for Solving the Cutting Path Problem”, MATEC Web Conf., 346 (2021), 01015
Alexander Petunin, Alexander Khalyavka, Michael Khachay, Andrei Kudriavtsev, Pavel Chentsov, Efim Polishchuk, Stanislav Ukolov, Lecture Notes in Computer Science, 12665, Pattern Recognition. ICPR International Workshops and Challenges, 2021, 227
Alexander Petunin, Efim Polishchuk, Stanislav Ukolov, Communications in Computer and Information Science, 1340, Advances in Optimization and Applications, 2020, 70
Michael Khachay, Katherine Neznakhina, “Complexity and approximability of the Euclidean generalized traveling salesman problem in grid clusters”, Ann Math Artif Intell, 88:1-3 (2020), 53
Michael Khachay, Andrei Kudriavtsev, Alexander Petunin, Lecture Notes in Computer Science, 12422, Optimization and Applications, 2020, 196
A.A. Petunin, E.G. Polishchuk, S.S. Ukolov, “On the new Algorithm for Solving Continuous Cutting Problem”, IFAC-PapersOnLine, 52:13 (2019), 2320
M. Khachay, K. Neznakhina, “Polynomial time solvable subclass of the generalized traveling salesman problem on grid clusters”, Analysis of Images, Social Networks and Texts, AIST 2017, Lecture Notes in Computer Science, 10716, eds. W. van der Aalst, D. Ignatov, M. Khachay, S. Kuznetsov, V. Lempitsky, I. Lomazova, N. Loukachevitch, A. Napoli, A. Panchenko, P. Pardalos, A. Savchenko, S. Wasserman, Springer, 2018, 346–355
Alexander G. Chentsov, Alexey M. Grigoriev, Alexey A. Chentsov, “Optimizing the starting point in a precedence constrained routing problem with complicated travel cost functions”, Ural Math. J., 4:2 (2018), 43–55
Michael Khachay, Katherine Neznakhina, Communications in Computer and Information Science, 871, Optimization Problems and Their Applications, 2018, 68
Michael Khachay, Katherine Neznakhina, Lecture Notes in Computer Science, 10627, Combinatorial Optimization and Applications, 2017, 265
M. Yu. Khachai, E. D. Neznakhina, “Approximation Schemes for the Generalized Traveling Salesman Problem”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 97–105