Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 3, Pages 222–232 (Mi timm1215)  

On the finite prime spectrum minimal groups

N. V. Maslovaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Let $G$ be a finite group. The set of all prime divisors of the order of $G$ is called the prime spectrum of $G$ and is denoted by $\pi(G)$. A group $G$ is called prime spectrum minimal if $\pi(G) \not = \pi(H)$ for any proper subgroup$H$ of$G$. We prove that every prime spectrum minimal group all whose non-abelian composition factors are isomorphic to the groups from the set $\{PSL_2(7), PSL_2(11), PSL_5(2)\}$ is generated by two conjugate elements. Thus, we expand the correspondent result for finite groups with Hall maximal subgroups. Moreover, we study the normal structure of a finite prime spectrum minimal group which has a simple non-abelian composition factor whose order is divisible by $3$ different primes only.
Keywords: finite group, generation by a pair of conjugate elements, prime spectrum, prime spectrum minimal group, maximal subgroup, composition factor.
Received: 14.04.2015
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 295, Issue 1, Pages 109–119
DOI: https://doi.org/10.1134/S0081543816090121
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: N. V. Maslova, “On the finite prime spectrum minimal groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 222–232; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 109–119
Citation in format AMSBIB
\Bibitem{Mas15}
\by N.~V.~Maslova
\paper On the finite prime spectrum minimal groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 222--232
\mathnet{http://mi.mathnet.ru/timm1215}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468106}
\elib{https://elibrary.ru/item.asp?id=24156725}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 295
\issue , suppl. 1
\pages 109--119
\crossref{https://doi.org/10.1134/S0081543816090121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394441400012}
Linking options:
  • https://www.mathnet.ru/eng/timm1215
  • https://www.mathnet.ru/eng/timm/v21/i3/p222
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :100
    References:73
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024