Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 3, Pages 89–99 (Mi timm1201)  

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles

E. Kh. Gimadi, I. A. Rykov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (216 kB) Citations (3)
References:
Abstract: We consider the $m$-Cycle Cover Problem, which consists in covering a complete undirected graph by $m$ vertex-nonadjacent cycles with extremal total edge weight. The so-called TSP approach to the construction of an approximate algorithm for this problem with the use of a solution of the traveling salesman problem (TSP) is presented. Modifications of the algorithm for the problems Euclidean Max $m$-Cycle Cover with deterministic instances (edge weights) in a multidimensional Euclidean space and Random Min $m$-Cycle Cover with random instances $UNI(0,1)$ are analyzed. It is shown that both algorithms have time complexity $\mathcal{O}(n^3)$ and are asymptotically optimal for the number of covering cycles $m=o(n)$ and $ m\le \frac{n^{1/3}}{\ln n}$, respectively.
Received: 10.05.2015
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 295, Issue 1, Pages 57–67
DOI: https://doi.org/10.1134/S0081543816090078
Bibliographic databases:
Document Type: Article
UDC: 519.16 + 519.85
Language: Russian
Citation: E. Kh. Gimadi, I. A. Rykov, “Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 89–99; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 57–67
Citation in format AMSBIB
\Bibitem{GimRyk15}
\by E.~Kh.~Gimadi, I.~A.~Rykov
\paper Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 89--99
\mathnet{http://mi.mathnet.ru/timm1201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468092}
\elib{https://elibrary.ru/item.asp?id=24156698}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 295
\issue , suppl. 1
\pages 57--67
\crossref{https://doi.org/10.1134/S0081543816090078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394441400007}
Linking options:
  • https://www.mathnet.ru/eng/timm1201
  • https://www.mathnet.ru/eng/timm/v21/i3/p89
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :82
    References:48
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024