Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 3, Pages 78–88 (Mi timm1200)  

This article is cited in 5 scientific papers (total in 5 papers)

Definability of Hewitt spaces by the lattices of subalgebras of semifields of continuous positive functions with max-plus

E. M. Vechtomov, V. V. Sidorov

Vyatka State University of Humanities, Kirov
Full-text PDF (201 kB) Citations (5)
References:
Abstract: The lattice $\mathbb{A}(U^{\vee}(X))$ of subalgebras of the semifield $U^{\vee}(X)$ of all continuous positive functions defined on a topological space $X$ is considered. A topological space is said to be a Hewitt space if it is homeomorphic to a closed subspace of a Tychonoff power of the real line $\mathbb{R}$. The main result of the paper is the proof of the fact that any Hewitt space $X$ is determined by the lattice $\mathbb{A}(U^{\vee}(X))$.
Keywords: semifield of continuous functions, subalgebra, lattice of subalgebras, isomorphism, hewitt space, max-addition.
Received: 20.04.2015
Bibliographic databases:
Document Type: Article
UDC: 512.556
Language: Russian
Citation: E. M. Vechtomov, V. V. Sidorov, “Definability of Hewitt spaces by the lattices of subalgebras of semifields of continuous positive functions with max-plus”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 78–88
Citation in format AMSBIB
\Bibitem{VecSid15}
\by E.~M.~Vechtomov, V.~V.~Sidorov
\paper Definability of Hewitt spaces by the lattices of subalgebras of semifields of continuous positive functions with max-plus
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 78--88
\mathnet{http://mi.mathnet.ru/timm1200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468091}
\elib{https://elibrary.ru/item.asp?id=24156696}
Linking options:
  • https://www.mathnet.ru/eng/timm1200
  • https://www.mathnet.ru/eng/timm/v21/i3/p78
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :103
    References:68
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024