Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 3, Pages 13–19 (Mi timm1193)  

This article is cited in 3 scientific papers (total in 3 papers)

On an inverse linear programming problem

G. A. Amirkhanova, A. I. Golikova, Yu. G. Evtushenkoa

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
Full-text PDF (157 kB) Citations (3)
References:
Abstract: A method for solving the following inverse linear programming (LP) problem is proposed. For a given LP problem and one of its feasible vectors, it is required to adjust the objective function vector as little as possible so that the given vector becomes optimal. The closeness of vectors is estimated by means of the Euclidean vector norm. The inverse LP problem is reduced to a problem of unconstrained minimization for a convex piecewise quadratic function. This minimization problem is solved by means of the generalized Newton method.
Keywords: linear programming, inverse linear programming problem, duality, unconstrained optimization, generalized newton method.
Received: 14.05.2015
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 295, Issue 1, Pages 21–27
DOI: https://doi.org/10.1134/S0081543816090030
Bibliographic databases:
Document Type: Article
UDC: 519.9
Language: Russian
Citation: G. A. Amirkhanova, A. I. Golikov, Yu. G. Evtushenko, “On an inverse linear programming problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 13–19; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 21–27
Citation in format AMSBIB
\Bibitem{AmiGolEvt15}
\by G.~A.~Amirkhanova, A.~I.~Golikov, Yu.~G.~Evtushenko
\paper On an inverse linear programming problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 13--19
\mathnet{http://mi.mathnet.ru/timm1193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468084}
\elib{https://elibrary.ru/item.asp?id=24156686}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 295
\issue , suppl. 1
\pages 21--27
\crossref{https://doi.org/10.1134/S0081543816090030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394441400003}
Linking options:
  • https://www.mathnet.ru/eng/timm1193
  • https://www.mathnet.ru/eng/timm/v21/i3/p13
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:465
    Full-text PDF :133
    References:74
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024