Abstract:
The problem of an optimal cover of sets in three-dimensional Euclidian space by the union of a fixed number of equal balls, where the optimality criterion is the radius of the balls, is studied. Analytical and numerical algorithms based on the division of a set into Dirichlet domains and finding their Chebyshev centers are suggested for this problem. Stochastic iterative procedures are used. Bounds for the asymptotics of the radii of the balls as their number tends to infinity are obtained. The simulation of several examples is performed and their visualization is presented.
Keywords:
Hausdorff deviation, best $n$-net, ball cover, Chebyshev center.
Citation:
V. N. Ushakov, P. D. Lebedev, “Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 2, 2015, 276–288; Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 225–237
\Bibitem{UshLeb15}
\by V.~N.~Ushakov, P.~D.~Lebedev
\paper Algorithms for the construction of an optimal cover for sets in three-dimensional Euclidean space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 2
\pages 276--288
\mathnet{http://mi.mathnet.ru/timm1188}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408896}
\elib{https://elibrary.ru/item.asp?id=23607938}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 293
\issue , suppl. 1
\pages 225--237
\crossref{https://doi.org/10.1134/S0081543816050205}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380005200020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978472236}
Linking options:
https://www.mathnet.ru/eng/timm1188
https://www.mathnet.ru/eng/timm/v21/i2/p276
This publication is cited in the following 6 articles:
Nikolay A. Krasovskii, Alexander M. Tarasyev, Static & Dynamic Game Theory: Foundations & Applications, Frontiers of Dynamic Games, 2020, 99
P. D. Lebedev, “Iteratsionnye metody postroeniya approksimatsii optimalnykh pokrytii nevypuklykh ploskikh mnozhestv”, Chelyab. fiz.-matem. zhurn., 4:1 (2019), 5–17
A. R. Alimov, I. G. Tsar'kov, “Chebyshev centres, Jung constants, and their applications”, Russian Math. Surveys, 74:5 (2019), 775–849
A. L. Kazakov, A. A. Lempert, K. M. Le, “O zadachakh postroeniya mnogokratnykh pokrytii i upakovok v dvumernom neevklidovom prostranstve”, UBS, 81 (2019), 6–25
Pavel Lebedev, Vladimir Ushakov, Communications in Computer and Information Science, 1090, Mathematical Optimization Theory and Operations Research, 2019, 244
V. N. Ushakov, P. D. Lebedev, “Algoritmy optimalnogo pokrytiya mnozhestv na ploskosti $\mathbb{R}^2$”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 26:2 (2016), 258–270