Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 2, Pages 252–266 (Mi timm1186)  

This article is cited in 2 scientific papers (total in 2 papers)

Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics

A. A. Uspenskii

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (276 kB) Citations (2)
References:
Abstract: The paper deals with nonsmooth problems of optimal control theory and geometrical optics that can be formalized as Dirichlet boundary value problems for first-order partial differential equations (including equations of Hamiltonian type). A methodology is elaborated for the identification and construction of singular sets with the use of multipoint derivatives. Four types of derivatives by virtue of diffeomorphisms are introduced; they generalize the notions of classical derivative and one-sided derivative. Formulas are given for the calculation of derivatives by virtue of diffeomorphisms for some classes of functions. The efficiency of the developed method of analysis is illustrated by the example of solving an optimal time problem in the case of a circular velocity vectogram and nonconvex target with nonsmooth boundary.
Keywords: first-order PDE, minimax solution, wavefront, diffeomorphism, eikonal, optimal result function, singular set, symmetry.
Received: 24.02.2015
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 293, Issue 1, Pages 238–253
DOI: https://doi.org/10.1134/S0081543816050217
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. A. Uspenskii, “Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 2, 2015, 252–266; Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 238–253
Citation in format AMSBIB
\Bibitem{Usp15}
\by A.~A.~Uspenskii
\paper Derivatives by virtue of diffeomorphisms and their applications in control theory and geometrical optics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 2
\pages 252--266
\mathnet{http://mi.mathnet.ru/timm1186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408894}
\elib{https://elibrary.ru/item.asp?id=23607936}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 293
\issue , suppl. 1
\pages 238--253
\crossref{https://doi.org/10.1134/S0081543816050217}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380005200021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978499768}
Linking options:
  • https://www.mathnet.ru/eng/timm1186
  • https://www.mathnet.ru/eng/timm/v21/i2/p252
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :85
    References:62
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024