Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 1, Pages 294–304 (Mi timm1165)  

This article is cited in 3 scientific papers (total in 3 papers)

Optimal shapes of cracks in a viscoelastic body

V. V. Shcherbakova, O. I. Krivorot'kob

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (194 kB) Citations (3)
References:
Abstract: We consider an optimal control problem for equations describing the quasistatic deformation of a linear viscoelastic body. There is a crack in the body, and displacements of opposite faces of the crack are constrained by the nonpenetration condition. The continuous dependence of the solution to the equilibrium problem on the shape of the crack is established. In particular, we prove the existence of a shape for which the crack opening is minimal
Keywords: viscoelasticity; crack; nonpenetration condition; optimal control; fictitious domain method.
Received: 17.09.2014
Bibliographic databases:
Document Type: Article
UDC: 517.97+539.3
Language: Russian
Citation: V. V. Shcherbakov, O. I. Krivorot'ko, “Optimal shapes of cracks in a viscoelastic body”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 1, 2015, 294–304
Citation in format AMSBIB
\Bibitem{ShcKri15}
\by V.~V.~Shcherbakov, O.~I.~Krivorot'ko
\paper Optimal shapes of cracks in a viscoelastic body
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 1
\pages 294--304
\mathnet{http://mi.mathnet.ru/timm1165}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3407902}
\elib{https://elibrary.ru/item.asp?id=23137999}
Linking options:
  • https://www.mathnet.ru/eng/timm1165
  • https://www.mathnet.ru/eng/timm/v21/i1/p294
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:501
    Full-text PDF :109
    References:69
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024