Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 1, Pages 197–204 (Mi timm1156)  

Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$

T. V. Pervukhina

Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
References:
Abstract: We consider the pseudovariety generated by all finite monoids on which Green's relations $\mathscr{R}$ and $\mathscr{H}$ coincide. It is shown that any finite monoid $S$ belonging to this pseudovariety divides the monoid of all upper-triangular row-monomial matrices over a finite group with zero adjoined. The proof is constructive; given a monoid $S$, the corresponding group and the order of matrices can be effectively found.
Keywords: finite monoids; monoid pseudovariety; upper-triangular matrices; Green's relations; $\mathscr{R}$-trivial monoids.
Received: 03.04.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 292, Issue 1, Pages 245–252
DOI: https://doi.org/10.1134/S0081543816020218
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: T. V. Pervukhina, “Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 1, 2015, 197–204; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 245–252
Citation in format AMSBIB
\Bibitem{Per15}
\by T.~V.~Pervukhina
\paper Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 1
\pages 197--204
\mathnet{http://mi.mathnet.ru/timm1156}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379617}
\elib{https://elibrary.ru/item.asp?id=23137988}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 292
\issue , suppl. 1
\pages 245--252
\crossref{https://doi.org/10.1134/S0081543816020218}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376272600021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971569474}
Linking options:
  • https://www.mathnet.ru/eng/timm1156
  • https://www.mathnet.ru/eng/timm/v21/i1/p197
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:160
    Full-text PDF :91
    References:38
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024