Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 1, Pages 191–196 (Mi timm1155)  

On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data

S. I. Novikovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
References:
Abstract: We consider an interpolation problem with minimum value of the uniform norm of the Laplace operator of interpolants for a class of bounded interpolated sequences. The data are interpolated at nodes of the grid formed by points from $\mathbb{R}^2$ with integer coordinates. Two-sided estimates for the uniform norm of the best interpolant are found, which improve known estimates.
Keywords: interpolation; Laplace operator; $ZP$-element.
Received: 09.11.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 292, Issue 1, Pages 238–244
DOI: https://doi.org/10.1134/S0081543816020206
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. I. Novikov, “On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 1, 2015, 191–196; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 238–244
Citation in format AMSBIB
\Bibitem{Nov15}
\by S.~I.~Novikov
\paper On estimates for the uniform norm of the Laplace operator of the best interpolants on a class of bounded interpolation data
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 1
\pages 191--196
\mathnet{http://mi.mathnet.ru/timm1155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379616}
\elib{https://elibrary.ru/item.asp?id=23137987}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 292
\issue , suppl. 1
\pages 238--244
\crossref{https://doi.org/10.1134/S0081543816020206}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376272600020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971537203}
Linking options:
  • https://www.mathnet.ru/eng/timm1155
  • https://www.mathnet.ru/eng/timm/v21/i1/p191
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :51
    References:47
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024