Abstract:
We consider techniques of estimating trajectory tubes of nonlinear control systems with uncertainty in the initial data and under the assumption of a quadratic nonlinearity of system state velocities over the states of the system. It is assumed that the uncertain initial states and the admissible controls are constrained by ellipsoidal restrictions. We study problems of sensitivity of reachable sets and of their ellipsoidal estimates to finite-dimensional parameters appearing in the constraints and in the uncertain dynamics of the control system. The results are based on algorithms and techniques of the ellipsoidal estimation theory and on the theory of differential inclusions.
Citation:
T. F. Filippova, “Estimates of reachable sets of control systems with nonlinearity and parametric perturbations”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 4, 2014, 287–296; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 67–75
\Bibitem{Fil14}
\by T.~F.~Filippova
\paper Estimates of reachable sets of control systems with nonlinearity and parametric perturbations
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 4
\pages 287--296
\mathnet{http://mi.mathnet.ru/timm1134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379290}
\elib{https://elibrary.ru/item.asp?id=22515154}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 292
\issue , suppl. 1
\pages 67--75
\crossref{https://doi.org/10.1134/S0081543816020061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376272600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971574810}
Linking options:
https://www.mathnet.ru/eng/timm1134
https://www.mathnet.ru/eng/timm/v20/i4/p287
This publication is cited in the following 4 articles:
Hamza El-Kebir, Ani Pirosmanishvili, Melkior Ornik, “Online Guaranteed Reachable Set Approximation for Systems With Changed Dynamics and Control Authority”, IEEE Trans. Automat. Contr., 69:2 (2024), 726
T. F. Filippova, “The HJB approach and state estimation for control systems with uncertainty”, IFAC-PapersOnLine, 51:13 (2018), 7–12
T. F. Filippova, “Differential equations for ellipsoidal estimates of reachable sets for a class of control systems with nonlinearity and uncertainty”, IFAC-PapersOnLine, 51:32 (2018), 770–775
T. F. Filippova, “Ellipsoidal estimates of reachable sets for control systems with nonlinear terms”, IFAC-PapersOnLine, 50:1 (2017), 15355–15360