Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 4, Pages 247–257 (Mi timm1131)  

This article is cited in 2 scientific papers (total in 2 papers)

Construction of a continuous minimax/viscosity solution of the Hamilton–Jacobi–Bellman equation with nonextendable characteristics

N. N. Subbotinaab, L. G. Shagalovaa

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Yeltsin Ural Federal University
Full-text PDF (224 kB) Citations (2)
References:
Abstract: The Cauchy problem for the Hamilton–Jacobi equation, which appears in molecular biology for the Crow–Kimura model of molecular evolution, is considered. The state characteristics of the equation that start in a given initial manifold bounded in the state space stay in a strip bounded in the state variable and fill a part of this strip. The values attained by the impulse characteristics on a finite time interval are arbitrarily large in magnitude. We propose a construction of a smooth extension for a continuous minimax/viscosity solution of the problem to the part of the strip that is not covered by the characteristics starting in the initial manifold.
Keywords: Hamilton–Jacobi–Bellman equations, method of characteristics, viscosity solutions, minimax solutions.
Received: 01.10.2014
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: N. N. Subbotina, L. G. Shagalova, “Construction of a continuous minimax/viscosity solution of the Hamilton–Jacobi–Bellman equation with nonextendable characteristics”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 4, 2014, 247–257
Citation in format AMSBIB
\Bibitem{SubSha14}
\by N.~N.~Subbotina, L.~G.~Shagalova
\paper Construction of a~continuous minimax/viscosity solution of the Hamilton--Jacobi--Bellman equation with nonextendable characteristics
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 4
\pages 247--257
\mathnet{http://mi.mathnet.ru/timm1131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379287}
\elib{https://elibrary.ru/item.asp?id=22515151}
Linking options:
  • https://www.mathnet.ru/eng/timm1131
  • https://www.mathnet.ru/eng/timm/v20/i4/p247
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :97
    References:73
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024