Abstract:
Properties of Lagrange multipliers from the Pontryagin maximum principle for problems with state constraints are investigated. Sufficient conditions for the continuity of the solution of the adjoint solution depending on how the extremal trajectory approaches the state constraint boundary are obtained. The proof uses the notion of closure by measure of a Lebesgue measurable function and the Caratheodory theorem.
Keywords:
optimal control, maximum principle, state constraints.
Citation:
A. V. Arutyunov, D. Yu. Karamzin, F. L. Pereira, “Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 4, 2014, 29–37; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 27–35
\Bibitem{AruKarPer14}
\by A.~V.~Arutyunov, D.~Yu.~Karamzin, F.~L.~Pereira
\paper Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 4
\pages 29--37
\mathnet{http://mi.mathnet.ru/timm1112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379267}
\elib{https://elibrary.ru/item.asp?id=22515131}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 292
\issue , suppl. 1
\pages 27--35
\crossref{https://doi.org/10.1134/S0081543816020036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376272600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971568096}
Linking options:
https://www.mathnet.ru/eng/timm1112
https://www.mathnet.ru/eng/timm/v20/i4/p29
This publication is cited in the following 8 articles:
Boris Miller, Evgeny Rubinovich, Systems & Control: Foundations & Applications, Optimization of Dynamical Systems with Impulse Controls and Shocks, 2024, 257
N. I. Pogodaev, M. V. Staritsyn, “Exact formulae for the increment of the objective functional and necessary optimality conditions, alternative to Pontryagin's maximum principle”, Sb. Math., 215:6 (2024), 790–822
Aram Arutyunov, Dmitry Karamzin, “A Survey on Regularity Conditions for State-Constrained Optimal Control Problems and the Non-degenerate Maximum Principle”, J Optim Theory Appl, 184:3 (2020), 697
Aram Arutyunov, Dmitry Karamzin, Fernando Lobo Pereira, Lecture Notes in Control and Information Sciences, 477, Optimal Impulsive Control, 2019, 99
A. Arutyunov, D. Karamzin, F. L. Pereira, “A remark on the continuity of the measure Lagrange multiplier in state constrained optimal control problems”, 2018 IEEE Conference on Decision and Control (CDC), IEEE, 2018, 49–54
A. Dmitruk, I. Samylovskiy, “On the relation between two approaches to necessary optimality conditions in problems with state constraints”, J. Optim. Theory Appl., 173:2 (2017), 391–420
Dmitry Karamzin, Valeriano de Oliveira, Fernando Pereira, Geraldo Silva, “Minimax optimal control problem with state constraints”, European Journal of Control, 32 (2016), 24
A. V. Arutyunov, D. Yu. Karamzin, “On some continuity properties of the measure Lagrange multiplier from the maximum principle for state constrained problems”, SIAM J. Control Optim., 53:4 (2015), 2514–2540