Abstract:
We study a variant of the attainability problem with constraints of asymptotic nature on the choice of controls. More exactly, we consider a control problem in the class of impulses of given intensity and vanishingly small length. The situation is complicated by the presence of discontinuous dependences, which produces effects of the type of multiplying a discontinuous function by a generalized function. The constructed extensions in the special class of finitely additive measures make it possible to present the required solution, defined as an asymptotic analog of an attainability domain, in terms of a continuous image of a compact set, which is described with the use of the Stone space corresponding to the natural algebra of sets of the control interval.
One of the authors had the honor of communicating with Nikolai Nikolaevich Krasovskii for many years and discussed with him problems that led to the statement considered in the paper. Krasovskii's support of this research direction provided possibilities for its fruitful development. His disciples and colleagues will always cherish the memory of Nikolai Nikolaevich in their hearts.
Citation:
A. G. Chentsov, A. P. Baklanov, “On the question of construction of an attraction set under constraints of asymptotic nature”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 3, 2014, 309–323; Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 40–55
\Bibitem{CheBak14}
\by A.~G.~Chentsov, A.~P.~Baklanov
\paper On the question of construction of an attraction set under constraints of asymptotic nature
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 3
\pages 309--323
\mathnet{http://mi.mathnet.ru/timm1102}
\elib{https://elibrary.ru/item.asp?id=23503129}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 291
\issue , suppl. 1
\pages 40--55
\crossref{https://doi.org/10.1134/S0081543815090035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366347200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949485009}
Linking options:
https://www.mathnet.ru/eng/timm1102
https://www.mathnet.ru/eng/timm/v20/i3/p309
This publication is cited in the following 7 articles:
A. G. Chentsov, “Ultrafiltry i maksimalnye stseplennye sistemy: osnovnye sootnosheniya”, Izv. IMI UdGU, 53 (2019), 138–157
A. G. Chentsov, I. I. Savenkov, Yu. V. Shapar, “Odna zadacha na programmnyi maksimin pri ogranicheniyakh impulsnogo kharaktera”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:1 (2018), 91–110
E. G. Pytkeev, A. G. Chentsov, “Volmenovskii kompaktifikator i ego primenenie dlya issledovaniya abstraktnoi zadachi o dostizhimosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:2 (2018), 199–212
A. G. Chentsov, “Compactifiers in extension constructions for reachability problems with constraints of asymptotic nature”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 102–118
A. G. Chentsov, A. P. Baklanov, I. I. Savenkov, “Zadacha o dostizhimosti s ogranicheniyami asimptoticheskogo kharaktera”, Izv. IMI UdGU, 2016, no. 1(47), 54–118
A. G. Chentsov, “Abstraktnaya zadacha o dostizhimosti: “chisto asimptoticheskaya” versiya”, Tr. IMM UrO RAN, 21, no. 2, 2015, 289–305
A. G. Chentsov, A. P. Baklanov, “On an asymptotic analysis problem related to the construction of an attainability domain”, Proc. Steklov Inst. Math., 291 (2015), 279–298