Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 3, Pages 263–275 (Mi timm1099)  

This article is cited in 2 scientific papers (total in 2 papers)

Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds

E. L. Tonkovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Udmurt State University
Full-text PDF (222 kB) Citations (2)
References:
Abstract: We introduce the notion of so-called standard control system, whose phase space is a finite-dimensional smooth manifold satisfying a series of conditions; in particular, it is supposed to be connected and orientable and have a countable atlas. For a given standard control system, we consider a set of time shifts and construct the closure of this set in the topology of uniform convergence on compact sets. In these terms, we study the conditions of uniform local reachability of a given trajectory. The main result is formulated in terms of a modified Lyapunov function. A simple example is considered.
Keywords: control systems, uniform local controllability, finite-dimensional smooth manifolds, Lyapunov functions.
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 291, Issue 1, Pages 208–221
DOI: https://doi.org/10.1134/S008154381509014X
Bibliographic databases:
Document Type: Article
UDC: 515.163.1+517.977.1
Language: Russian
Citation: E. L. Tonkov, “Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 3, 2014, 263–275; Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 208–221
Citation in format AMSBIB
\Bibitem{Ton14}
\by E.~L.~Tonkov
\paper Barbashin and Krasovskii's asymptotic stability theorem in application to control systems on smooth manifolds
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 3
\pages 263--275
\mathnet{http://mi.mathnet.ru/timm1099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379229}
\elib{https://elibrary.ru/item.asp?id=23503126}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 291
\issue , suppl. 1
\pages 208--221
\crossref{https://doi.org/10.1134/S008154381509014X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366347200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949485990}
Linking options:
  • https://www.mathnet.ru/eng/timm1099
  • https://www.mathnet.ru/eng/timm/v20/i3/p263
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:396
    Full-text PDF :100
    References:74
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024