Abstract:
For systems linear in control we consider problems of recovering the dynamics and control from a posteriori statistics of trajectory sampling and known estimates for the sampling error. An optimal control problem of minimizing an integral regularized functional of dynamics and statistics residuals is introduced. Optimal synthesis is used to construct controls and trajectories that approximate a solution of the inverse problem. A numerical approximation method based on the method of characteristics for the Hamilton–Jacobi–Bellman equation and on the notion of minimax/viscosity solution is developed. Sufficient conditions are obtained under which the proposed approximations converge to a normal solution of the inverse problem under a matched vanishing of the approximation parameters (bounds for the sampling error, the regularizing parameter, the grid step in the state variable, and the integration step). Results of the numerical solution of problems of identification and control and trajectory recovery are presented for a mechanical model of gravitation under given statistics of phase coordinate sampling.
Citation:
N. N. Subbotina, T. B. Tokmantsev, “A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 3, 2014, 218–233; Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 173–189
\Bibitem{SubTok14}
\by N.~N.~Subbotina, T.~B.~Tokmantsev
\paper A study of the stability of solutions to inverse problems of dynamics of control systems under perturbations of initial data
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 3
\pages 218--233
\mathnet{http://mi.mathnet.ru/timm1096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379287}
\elib{https://elibrary.ru/item.asp?id=23503123}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 291
\issue , suppl. 1
\pages 173--189
\crossref{https://doi.org/10.1134/S0081543815090126}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366347200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949490042}
Linking options:
https://www.mathnet.ru/eng/timm1096
https://www.mathnet.ru/eng/timm/v20/i3/p218
This publication is cited in the following 5 articles:
N. N. Subbotina, “Hamiltonian systems in dynamic reconstruction problems”, IFAC-PapersOnLine, 51:32 (2018), 136–140
N. N. Subbotina, E. A. Krupennikov, “The method of characteristics in an identification problem”, Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 205–216
Nina N. Subbotina, Evgeniy A. Krupennikov, “Dynamic Programming to Identification Problems”, WJET, 04:03 (2016), 228
E. A. Krupennikov, “K obosnovaniyu metoda resheniya zadachi rekonstruktsii dinamiki makroekonomicheskoi modeli”, Tr. IMM UrO RAN, 21, no. 2, 2015, 102–114
N. N. Subbotina, T. B. Tokmantsev, E. A. Krupennikov, “On the solution of inverse problems of dynamics of linearly controlled systems by the negative discrepancy method”, Proc. Steklov Inst. Math., 291 (2015), 253–262