Abstract:
The method of open-loop control packages is a tool for stating the solvability of guaranteed closed-loop control problems under incomplete information on the observed states. In this paper, the method is specified for the problem of guaranteed closed-loop guidance of a linear control system to a convex target set at a prescribed point in time. It is assumed that the observed signal on the system's states is linear and the set of its admissible initial states is finite. It is proved that the problem under consideration is equivalent to the problem of open-loop guidance of an extended linear control system to an extended convex target set. Using a separation theorem for convex sets, a solvability criterion is derived, which reduces to a solution of a finite-dimensional optimization problem. An illustrative example is considered.
Keywords:
control, incomplete information, linear systems.
Citation:
A. V. Kryazhimskiy, N. V. Strelkovskiy, “An open-loop criterion for the solvability of a closed-loop guidance problem with incomplete information. Linear control systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 3, 2014, 132–147; Proc. Steklov Inst. Math. (Suppl.), 291, suppl. 1 (2015), 113–127
\Bibitem{KryStr14}
\by A.~V.~Kryazhimskiy, N.~V.~Strelkovskiy
\paper An open-loop criterion for the solvability of a~closed-loop guidance problem with incomplete information. Linear control systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 3
\pages 132--147
\mathnet{http://mi.mathnet.ru/timm1090}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364421}
\elib{https://elibrary.ru/item.asp?id=23503117}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 291
\issue , suppl. 1
\pages 113--127
\crossref{https://doi.org/10.1134/S0081543815090084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366347200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949505291}
Linking options:
https://www.mathnet.ru/eng/timm1090
https://www.mathnet.ru/eng/timm/v20/i3/p132
This publication is cited in the following 17 articles:
P. G. Surkov, “Package guidance problem for a fractional-order system”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S212–S230
Jörg Fliege, Walton Pereira Coutinho, Encyclopedia of Optimization, 2023, 1
Simon Plakolb, Nikita Strelkovskii, “Applicability of the Future State Maximization Paradigm to Agent-Based Modeling: A Case Study on the Emergence of Socially Sub-Optimal Mobility Behavior”, Systems, 11:2 (2023), 105
Nikita Strelkovskii, Sergey Orlov, Lecture Notes in Control and Information Sciences - Proceedings, Stability, Control and Differential Games, 2020, 213
S. M. Orlov, N. V. Strelkovskii, “Calculation of Elements of a Guiding Program Package for Singular Clusters of the Set of Initial States in the Package Guidance Problem”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S163–S177
P. G. Surkov, “Zadacha paketnogo navedeniya s nepolnoi informatsiei pri integralnom signale nablyudeniya”, Sib. elektron. matem. izv., 15 (2018), 373–388
P. G. Surkov, “On the problem of package guidance for nonlinear control system via fuzzy approach”, IFAC-PapersOnLine, 51:32 (2018), 733–738
N. V. Strelkovskii, S. M. Orlov, “Algorithm for Constructing a Guaranteeing Program Package in a Control Problem with Incomplete Information”, MoscowUniv.Comput.Math.Cybern., 42:2 (2018), 69
V. I. Maksimov, P. G. Surkov, “O razreshimosti zadachi garantirovannogo paketnogo navedeniya na sistemu tselevykh mnozhestv”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:3 (2017), 344–354
V. I. Maksimov, “Problem of guaranteed guidance by measuring part of the state vector coordinates”, Diff Equat, 53:11 (2017), 1449
M. S. Blizorukova, “On a control problem for a linear system with delay in the control”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 35–42
V. I. Maksimov, “On a guaranteed guidance problem under incomplete information”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 147–158
P. G. Surkov, “The problem of closed-loop guidance by a given time for a linear control system with delay”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 218–227
V. I. Maksimov, “Guidance problem for a distributed system with incomplete information on the state coordinates and an unknown initial state”, Differ. Equ., 52:11 (2016), 1442–1452
V. L. Rozenberg, “A control problem under incomplete information for a linear stochastic differential equation”, Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 145–155
V. I. Maksimov, “Differential guidance game with incomplete information on the state coordinates and unknown initial state”, Differ. Equ., 51:12 (2015), 1656–1665
A. V. Kryazhimskii, N. V. Strelkovskii, “Zadacha garantirovannogo pozitsionnogo navedeniya lineinoi upravlyaemoi sistemy k zadannomu momentu vremeni pri nepolnoi informatsii. Programmnyi kriterii razreshimosti”, Tr. IMM UrO RAN, 20, no. 4, 2014, 168–177