Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 2, Pages 268–276 (Mi timm1076)  

This article is cited in 4 scientific papers (total in 4 papers)

On the application of the residual method for the correction of inconsistent problems of convex programming

V. D. Skarinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b B. N. Yeltsin Ural Federal University
Full-text PDF (167 kB) Citations (4)
References:
Abstract: For the correction of a convex programming problem with potentially inconsistent constraint system (an improper problem), we apply the residual method, which is a standard regularization procedure for ill-posed optimization models. Further, a problem statement typical for the residual method is reduced to the minimization problem for an appropriate penalty function. We apply two classical penalty functions: the quadratic penalty function and the Eremin–Zangwill exact penalty function. For each of the approaches, we establish convergence conditions and estimates for the approximation error.
Keywords: convex programming, improper problem, optimal correction, residual method, penalty function methods.
Received: 04.03.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 289, Issue 1, Pages 182–191
DOI: https://doi.org/10.1134/S0081543815050168
Bibliographic databases:
Document Type: Article
UDC: 519.853
Language: Russian
Citation: V. D. Skarin, “On the application of the residual method for the correction of inconsistent problems of convex programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 268–276; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 182–191
Citation in format AMSBIB
\Bibitem{Ska14}
\by V.~D.~Skarin
\paper On the application of the residual method for the correction of inconsistent problems of convex programming
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 268--276
\mathnet{http://mi.mathnet.ru/timm1076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364157}
\elib{https://elibrary.ru/item.asp?id=21585642}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 289
\issue , suppl. 1
\pages 182--191
\crossref{https://doi.org/10.1134/S0081543815050168}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356931500016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932602634}
Linking options:
  • https://www.mathnet.ru/eng/timm1076
  • https://www.mathnet.ru/eng/timm/v20/i2/p268
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :92
    References:100
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024