Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 2, Pages 161–167 (Mi timm1067)  

Justification of the asymptotics of solutions of the Navier–Stokes system for low Reynolds numbers

S. V. Zakharov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: Asymptotics of a generalized solution of the steady-state Navier–Stokes system of equations in a bounded domain $\Omega$ of the three-dimensional space is studied under constraint on the generalized Reynolds number. By methods of functional analysis a theorem about approximation of the exact solution of the homogeneous boundary value problem by partial sums of the found series up to any degree of accuracy in the norm of space $C(\overline\Omega)$ is proved. For the non-steady-state Navier–Stokes system of equations asymptotic approximation in the norm of space $L_2(\Omega)$ is proved.
Keywords: the Navier–Stokes system, asymptotic approximation.
Received: 10.02.2014
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: S. V. Zakharov, “Justification of the asymptotics of solutions of the Navier–Stokes system for low Reynolds numbers”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 161–167
Citation in format AMSBIB
\Bibitem{Zak14}
\by S.~V.~Zakharov
\paper Justification of the asymptotics of solutions of the Navier--Stokes system for low Reynolds numbers
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 161--167
\mathnet{http://mi.mathnet.ru/timm1067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364148}
\elib{https://elibrary.ru/item.asp?id=21585633}
Linking options:
  • https://www.mathnet.ru/eng/timm1067
  • https://www.mathnet.ru/eng/timm/v20/i2/p161
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024