|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 1, Pages 247–257
(Mi timm1047)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables
S. A. Stasyuk Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev
Abstract:
We obtain exact order estimates for approximations of mixed smoothness classes $\mathbf{MB}^\Omega_{p,\theta}$ by Fourier sums in the metric $L_q$ for $1<p<q<\infty$. The spectrum of approximation polynomials lies in the sets generated by level surfaces of the function $\Omega(t)/\prod_{j=1}^dt_j^{1/p-1/q}$. Under some matching conditions on the parameters $p,q$ and $\theta$, we obtain exact order estimates for Kolmogorov widths of the classes under consideration in the metric $L_q$.
Keywords:
hyperbolic cross, Kolmogorov width, best approximation, mixed smoothness, Fourier sums.
Received: 16.10.2013
Citation:
S. A. Stasyuk, “Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 247–257
Linking options:
https://www.mathnet.ru/eng/timm1047 https://www.mathnet.ru/eng/timm/v20/i1/p247
|
Statistics & downloads: |
Abstract page: | 335 | Full-text PDF : | 94 | References: | 66 | First page: | 9 |
|