Abstract:
We consider the pseudovariety generated by all finite monoids on which Green's relations R and H coincide. We find a new algorithm that determines if a given finite monoid belongs to this pseudovariety.
\Bibitem{Per14}
\by T.~V.~Pervukhina
\paper On the pseudovariety generated by all finite monoids satisfying $\mathscr{R=H}$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 215--220
\mathnet{http://mi.mathnet.ru/timm1043}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364205}
\elib{https://elibrary.ru/item.asp?id=21258496}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 156--161
\crossref{https://doi.org/10.1134/S0081543815020157}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352991400014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958251493}
Linking options:
https://www.mathnet.ru/eng/timm1043
https://www.mathnet.ru/eng/timm/v20/i1/p215
This publication is cited in the following 1 articles:
T. V. Pervukhina, “Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 245–252