Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 1, Pages 130–141 (Mi timm1036)  

The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space

N. A. Kuklinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University
References:
Abstract: We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that the problem has a unique solution, which is a polynomial of degree $27$. This polynomial is a linear combination of Legendre polynomials of degrees $0,1,2,3,4,5,8,9,10,20,27$ with positive coefficients; it has simple root $1/2$ and five roots of multiplicity $2$ in $(-1,1/2)$. Also we consider dual problem for nonnegative measures on $[-1,1/2]$. We prove that extremal measure is unique.
Keywords: Delsarte method, infinite-dimensional linear programming, Legendre polynomials, kissing numbers.
Received: 03.12.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 288, Issue 1, Pages 99–111
DOI: https://doi.org/10.1134/S008154381502011X
Bibliographic databases:
Document Type: Article
UDC: 517.518.86+519.147
Language: Russian
Citation: N. A. Kuklin, “The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 130–141; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 99–111
Citation in format AMSBIB
\Bibitem{Kuk14}
\by N.~A.~Kuklin
\paper The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 130--141
\mathnet{http://mi.mathnet.ru/timm1036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364198}
\elib{https://elibrary.ru/item.asp?id=21258489}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 99--111
\crossref{https://doi.org/10.1134/S008154381502011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352991400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958292235}
Linking options:
  • https://www.mathnet.ru/eng/timm1036
  • https://www.mathnet.ru/eng/timm/v20/i1/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :90
    References:79
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024