Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 1, Pages 43–51 (Mi timm1028)  

Description of a helical motion of an incompressible nonviscous fluid

V. P. Vereshchaginab, Yu. N. Subbotinac, N. I. Chernykhac

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Russian State Professional Pedagogical University
c Institute of Mathematics and Computer Science, Ural Federal University
References:
Abstract: We consider a problem of describing the motion of a fluid filling at any specific instant $t\ge0$ a domain $D\subset R^3$ in terms of velocity $\mathbf v$ and pressure $p$. We assume that the pair of variables $(\mathbf v,p)$ satisfies a system of equations that includes Euler's equation and the incompressible fluid continuity equation. For the case of an axially symmetric cylindrical layer $D$, we find a general solution of this system of equations in the class of vector fields $\mathbf v$ whose lines for any $t\ge0$ coincide everywhere in $D$ with their vortex lines and lie on axially symmetric cylindrical surfaces nested in $D$. The general solution is characterized in a theorem. As an example, we specify a family of solutions expressed in terms of cylindrical functions, which, for $D=R^3$, includes a particular solution obtained for the first time by I. S. Gromeka in the case of steady-state helical cylindrical motions.
Keywords: scalar and vector fields, curl, helical motion, Gromeka's problem.
Received: 12.04.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 288, Issue 1, Pages 202–210
DOI: https://doi.org/10.1134/S0081543815020212
Bibliographic databases:
Document Type: Article
UDC: 514.17+532.5
Language: Russian
Citation: V. P. Vereshchagin, Yu. N. Subbotin, N. I. Chernykh, “Description of a helical motion of an incompressible nonviscous fluid”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 43–51; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 202–210
Citation in format AMSBIB
\Bibitem{VerSubChe14}
\by V.~P.~Vereshchagin, Yu.~N.~Subbotin, N.~I.~Chernykh
\paper Description of a~helical motion of an incompressible nonviscous fluid
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 43--51
\mathnet{http://mi.mathnet.ru/timm1028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364190}
\elib{https://elibrary.ru/item.asp?id=21258481}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 202--210
\crossref{https://doi.org/10.1134/S0081543815020212}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352991400020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958280700}
Linking options:
  • https://www.mathnet.ru/eng/timm1028
  • https://www.mathnet.ru/eng/timm/v20/i1/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025