Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 1, Pages 17–31 (Mi timm1026)  

This article is cited in 13 scientific papers (total in 13 papers)

Bernstein–Szegö inequality for fractional derivatives of trigonometric polynomials

V. V. Arestovab, P. Yu. Glazyrinaba

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University
References:
Abstract: On the set $\mathscr F_n$ of trigonometric polynomial of degree $n\ge1$ with complex coefficients, we consider the Szegö operator $D^\alpha_\theta$ defined by the relation $D^\alpha_\theta f_n(t)=\cos\theta D^\alpha f_n(t)-\sin\theta D^\alpha\widetilde f_n(t)$ for $\alpha,\theta\in\mathbb R$, $\alpha\ge0$; where $D^\alpha f_n$ and $D^\alpha\widetilde f_n$ are the Weyl fractional derivatives of (real) order $\alpha$ of the polynomial $f_n$ and its conjugate polynomial $\widetilde f_n$. In particular, we prove that, if $\alpha\ge n\ln2n$, then, for any $\theta\in\mathbb R$, the sharp inequality $\|\cos\theta D^\alpha f_n-\sin\theta D^\alpha\widetilde f_n\|_{L_p}\le n^\alpha\|f_n\|_{L_p}$ holds in the spaces $L_p$ for all $p\ge0$ on the set $\mathscr F_n$. For classical derivatives (of integer order $\alpha\ge1$), this inequality was obtained by Szegö (1928) in the uniform norm $(p=\infty)$ and by Zygmund (1931–1935) for $1\le p<\infty$. A. I. Kozko (1998) proved this inequality for fractional derivatives of (real) order $\alpha\ge1$ and $1\le p\le\infty$.
Keywords: trigonometric polynomial, Weyl fractional derivative, Bernstein inequality, Szegö inequality.
Received: 16.09.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 288, Issue 1, Pages 13–28
DOI: https://doi.org/10.1134/S0081543815020030
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
Language: Russian
Citation: V. V. Arestov, P. Yu. Glazyrina, “Bernstein–Szegö inequality for fractional derivatives of trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 17–31; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 13–28
Citation in format AMSBIB
\Bibitem{AreGla14}
\by V.~V.~Arestov, P.~Yu.~Glazyrina
\paper Bernstein--Szeg\"o inequality for fractional derivatives of trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 17--31
\mathnet{http://mi.mathnet.ru/timm1026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364188}
\elib{https://elibrary.ru/item.asp?id=21258479}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 13--28
\crossref{https://doi.org/10.1134/S0081543815020030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352991400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958235479}
Linking options:
  • https://www.mathnet.ru/eng/timm1026
  • https://www.mathnet.ru/eng/timm/v20/i1/p17
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025