Loading [MathJax]/jax/output/CommonHTML/jax.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 1, Pages 17–31 (Mi timm1026)  

This article is cited in 13 scientific papers (total in 13 papers)

Bernstein–Szegö inequality for fractional derivatives of trigonometric polynomials

V. V. Arestovab, P. Yu. Glazyrinaba

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University
References:
Abstract: On the set Fn of trigonometric polynomial of degree n1 with complex coefficients, we consider the Szegö operator Dαθ defined by the relation Dαθfn(t)=cosθDαfn(t)sinθDα˜fn(t) for α,θR, α0; where Dαfn and Dα˜fn are the Weyl fractional derivatives of (real) order α of the polynomial fn and its conjugate polynomial ˜fn. In particular, we prove that, if αnln2n, then, for any θR, the sharp inequality cosθDαfnsinθDα˜fnLpnαfnLp holds in the spaces Lp for all p0 on the set Fn. For classical derivatives (of integer order α1), this inequality was obtained by Szegö (1928) in the uniform norm (p=) and by Zygmund (1931–1935) for 1p<. A. I. Kozko (1998) proved this inequality for fractional derivatives of (real) order α1 and 1p.
Keywords: trigonometric polynomial, Weyl fractional derivative, Bernstein inequality, Szegö inequality.
Received: 16.09.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 288, Issue 1, Pages 13–28
DOI: https://doi.org/10.1134/S0081543815020030
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
Language: Russian
Citation: V. V. Arestov, P. Yu. Glazyrina, “Bernstein–Szegö inequality for fractional derivatives of trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 17–31; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 13–28
Citation in format AMSBIB
\Bibitem{AreGla14}
\by V.~V.~Arestov, P.~Yu.~Glazyrina
\paper Bernstein--Szeg\"o inequality for fractional derivatives of trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 17--31
\mathnet{http://mi.mathnet.ru/timm1026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364188}
\elib{https://elibrary.ru/item.asp?id=21258479}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 13--28
\crossref{https://doi.org/10.1134/S0081543815020030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352991400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958235479}
Linking options:
  • https://www.mathnet.ru/eng/timm1026
  • https://www.mathnet.ru/eng/timm/v20/i1/p17
  • This publication is cited in the following 13 articles:
    1. A. O. Leont'eva, “Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm”, Math. Notes, 115:2 (2024), 205–214  mathnet  crossref  crossref  mathscinet
    2. V. P. Zastavnyi, “On extremal functions in inequalities for entire functions”, Math. Notes, 116:1 (2024), 58–65  mathnet  crossref  crossref
    3. A. O. Leont'eva, “Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in $L_p$-spaces, $0\leqslant p\leqslant\infty$, with classical value of the sharp constant”, Sb. Math., 214:3 (2023), 411–428  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. V. P. Zastavnyi, “Ob ekstremalnykh trigonometricheskikh polinomakh”, Tr. IMM UrO RAN, 29, no. 4, 2023, 70–91  mathnet  crossref  elib
    5. A. O. Leont'eva, “On Constants in the Bernstein–Szegő Inequality for the Weyl Derivative of Order Less Than Unity of Trigonometric Polynomials and Entire Functions of Exponential Type in the Uniform Norm”, Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S146–S154  mathnet  crossref  crossref  elib
    6. A. O. Leont'eva, “Bernstein inequality for Riesz derivative of fractional order less than 1 of entire function of exponential type”, Dokl. Math., 108:3 (2023), 524–527  mathnet  crossref  crossref  elib
    7. A. O. Leonteva, “Neravenstvo Bernshteina - Sege dlya trigonometricheskikh polinomov v prostranstve $L_0$ s konstantoi bolshei, chem klassicheskaya”, Tr. IMM UrO RAN, 28, no. 4, 2022, 128–136  mathnet  crossref  elib
    8. O. L. Vinogradov, “On constants in abstract inverse theorems of approximation theory”, St. Petersburg Math. J., 34:4 (2023), 573–589  mathnet  crossref
    9. D. V. Gorbachev, “Tochnye neravenstva Bernshteina — Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110  mathnet  crossref
    10. D. V. Gorbachev, I. A. Martyanov, “Konstanty Markova–Bernshteina–Nikolskogo dlya polinomov v prostranstve $L^{p}$ s vesom Gegenbauera”, Chebyshevskii sb., 21:4 (2020), 29–44  mathnet  crossref
    11. V. P. Zastavnyi, A. Manov, “Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications”, Math. Notes, 103:4 (2018), 550–564  mathnet  crossref  crossref  mathscinet  isi  elib
    12. A. O. Leont'eva, “Bernstein's Inequality for the Weyl Derivatives of Trigonometric Polynomials in the Space $L_0$”, Math. Notes, 104:2 (2018), 263–270  mathnet  crossref  crossref  mathscinet  isi  elib
    13. A. O. Leont'eva, “Bernstein–Szegő Inequality for the Weyl Derivative of Trigonometric Polynomials in $L_0$”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S127–S134  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:794
    Full-text PDF :230
    References:121
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025