Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 4, Pages 203–213 (Mi timm1014)  

This article is cited in 1 scientific paper (total in 1 paper)

Factorization of the reaction-diffusion equation, the wave equation, and other equations

M. F. Prokhorovaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (221 kB) Citations (1)
References:
Abstract: We investigate equations of the form $D_{t}u = \Delta u + \xi\nabla u$ for an unknown function $u(t,x)$, $t\in\mathbb R$, $x\in X$, where $D_t u = a_0(u,t)+\sum_{k=1}^r a_k(t,u)\partial_t^k u$, $\Delta$ is the Laplace–Beltrami operator on a Riemannian manifold $X$, and $\xi$ is a smooth vector field on $X$. More exactly, we study morphisms from this equation within the category $\mathcal{PDE}$ of partial differential equations, which was introduced by the author earlier. We restrict ourselves to morphisms of a special form — the so-called geometric morphisms, which are given by mappings of $X$ to other smooth manifolds (of the same or smaller dimension).
It is shown that a mapping $f\colon X\to Y$ defines a morphism from the equation $D_{t}u = \Delta u + \xi\nabla u$ if and only if, for some vector field $\Xi$ and a metric on $Y$, the equality $(\Delta+\xi\nabla)f^{\ast}v = f^{\ast}(\Delta + \Xi\nabla)v$ holds for any smooth function $v\colon Y\to\mathbb R$. In this case, the quotient equation is $D_{t}v = \Delta v + \Xi\nabla v$ for the unknown function $v(t,y)$, $y\in Y$.
It is also shown that, if a mapping $f\colon X\to Y$ is a locally trivial fiber bundle, then $f$ defines a morphism from the equation $D_{t}u = \Delta u$ if and only if fibers of $f$ are parallel and, for any path $\gamma$ on $Y$, the expansion factor of a fiber transferred along the horizontal lift $\gamma$ on $X$ depends on $\gamma$ only.
Keywords: category of partial differential equations, reaction–diffusion equation, heat equation, wave equation.
Received: 26.05.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 287, Issue 1, Pages 156–166
DOI: https://doi.org/10.1134/S0081543814090156
Bibliographic databases:
Document Type: Article
UDC: 517.958,515.168
Language: Russian
Citation: M. F. Prokhorova, “Factorization of the reaction-diffusion equation, the wave equation, and other equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 4, 2013, 203–213; Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 156–166
Citation in format AMSBIB
\Bibitem{Pro13}
\by M.~F.~Prokhorova
\paper Factorization of the reaction-diffusion equation, the wave equation, and other equations
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 4
\pages 203--213
\mathnet{http://mi.mathnet.ru/timm1014}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364378}
\elib{https://elibrary.ru/item.asp?id=20640515}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 287
\issue , suppl. 1
\pages 156--166
\crossref{https://doi.org/10.1134/S0081543814090156}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345589100015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84912049335}
Linking options:
  • https://www.mathnet.ru/eng/timm1014
  • https://www.mathnet.ru/eng/timm/v19/i4/p203
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :103
    References:69
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024