Abstract:
For a model describing the dynamics of two competing size-structured populations under chosen intensities of their exploitation, the existence and uniqueness of a stationary solution is proved. It is shown that there exist exploitation intensities that maximize a given profit functional on the stationary solution corresponding to them.
Citation:
A. A. Davydov, A. S. Platov, “Optimal exploitation of two competing size-structured populations”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 4, 2013, 89–94; Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 49–54
This publication is cited in the following 3 articles:
A. A. Davydov, A. S. Platov, D. V. Tunitskii, “Suschestvovanie optimalnogo statsionarnogo resheniya v KPP-modeli pri nelokalnoi konkurentsii”, Tr. IMM UrO RAN, 30, no. 3, 2024, 113–121
A. A. Davydov, A. S. Platov, D. V. Tunitsky, “Existence of an Optimal Stationary Solution in the KPP Model under Nonlocal Competition”, Proc. Steklov Inst. Math., 327:S1 (2024), S66
A. A. Davydov, A. F. Nassar, “On a stationary state in the dynamics of a population with hierarchical competition”, Russian Math. Surveys, 69:6 (2014), 1126–1128