Proceedings of the Institute of Mathematics of the NAS of Belarus
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Institute of Mathematics of the NAS of Belarus, 2024, Volume 32, Number 1, Pages 31–37 (Mi timb381)  

ALGEBRA AND NUMBER THEORY

On $n$-multiply $\sigma$-locality of a non-empty $\tau$-cloused formation of finite groups

I. N. Safonova

Belarusian State University, Minsk, Belarus
References:
Abstract: All groups under consideration are finite. Let $\sigma =\{\sigma_{i} \mid i\in I \}$ be some partition of the set of all primes, $G$ be a group, $\sigma (G)=\{\sigma_i\mid \sigma_i\cap \pi (G)\ne \varnothing\} $, $\mathfrak F$ be a class of groups, and $\sigma (\mathfrak{F})=\bigcup\limits_{G\in \mathfrak{F}}\sigma (G).$ A function $f$ of the form $f:\sigma \to\{\text{formations of groups}\}$ is called a formation $\sigma$-function. For any formation $\sigma$-function $f$ the class $LF_{\sigma}(f)$ is defined as follows: $ LF_{\sigma}(f)=(G \mid G=1 \ \text{or }\ G\ne 1\ \text{and }G/O_{\sigma_i', \sigma_i}(G) \in f(\sigma_{i}) \ \text{ for all } \sigma_i \in \sigma(G)). $ If for some formation $\sigma$-function $f$ we have $\mathfrak{F}=LF_{\sigma}(f),$ then the class $\mathfrak{F}$ is called $\sigma $-local and $f$ is called a $\sigma$-local definition of $ \mathfrak{F}.$ Every formation is called $0$-multiply $\sigma $-local. For $n \geqslant 1,$ a formation $\mathfrak{F}$ is called $n$-multiply $\sigma $-local provided either $\mathfrak{F}=(1)$ is the class of all identity groups or $\mathfrak{F}=LF_{\sigma}(f),$ where $f(\sigma_i)$ is $(n-1)$-multiply $\sigma$-local for all $\sigma_i\in \sigma (\mathfrak{F}).$ Let $\tau(G)$ be a set of subgroups of $G$ such that $G\in \tau(G).$ Then $\tau$ is called a {subgroup functor} if for every epimorphism $\varphi$ : $A \to~B$ and any groups $H \in \tau (A)$ and $T\in \tau (B)$ we have $H^{\varphi}\in\tau(B)$ and $T^{{\varphi}^{-1}}\in\tau(A).$ A class of groups $\mathfrak{F}$ is called {$\tau$-closed} if $\tau(G)\subseteq\mathfrak{F}$ for all $G\in\mathfrak F.$ In this paper, necessary and sufficient conditions for $n$-multiply $\sigma$-locality $(n\geqslant 1)$ of a non-empty $\tau$-closed formation are obtained.
Keywords: finite group, formations, subgroup functor, $\sigma$-local formation, $\tau$-closed formation.
Funding agency Grant number
Ministry of Education of the Republic of Belarus 20211328
Received: 21.02.2024
Revised: 14.06.2024
Accepted: 18.06.2024
Document Type: Article
UDC: 512.542
Language: Russian
Citation: I. N. Safonova, “On $n$-multiply $\sigma$-locality of a non-empty $\tau$-cloused formation of finite groups”, Proceedings of the Institute of Mathematics of the NAS of Belarus, 32:1 (2024), 31–37
Citation in format AMSBIB
\Bibitem{Saf24}
\by I.~N.~Safonova
\paper On $n$-multiply $\sigma$-locality of a non-empty $\tau$-cloused formation of finite groups
\jour Proceedings of the Institute of Mathematics of the NAS of Belarus
\yr 2024
\vol 32
\issue 1
\pages 31--37
\mathnet{http://mi.mathnet.ru/timb381}
Linking options:
  • https://www.mathnet.ru/eng/timb381
  • https://www.mathnet.ru/eng/timb/v32/i1/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Institute of Mathematics of the NAS of Belarus
    Statistics & downloads:
    Abstract page:20
    Full-text PDF :3
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024