Proceedings of the Institute of Mathematics of the NAS of Belarus
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Institute of Mathematics of the NAS of Belarus, 2024, Volume 32, Number 1, Pages 17–24 (Mi timb379)  

ALGEBRA AND NUMBER THEORY

Lattice characterizations of soluble and supersoluble finite groups

A. -M. Liua, S. Wangb, V. G. Safonovc, A. N. Skibad

a School of Mathematics and Statistics, Hainan University, Haikou, Hainan, P. R. China
b School of Mathematics, Tianjin University, Tianjin, P. R. China
c Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Belarus
d Francisk Skorina Gomel State University, Gomel, Belarus
References:
Abstract: Let $G$ be a finite group and ${\mathscr L}_{sn}(G)$ be the lattice of all subnormal subgroups of $G$. Let $A$ and $N$ be subgroups of $G$ and $1, G\in {\mathscr L}$ be a sublattice of ${\mathscr L}_{sn}(G)$, that is, $A\cap B$, $\langle A, B \rangle \in {\mathscr L}$ for all $A, B \in {\mathscr L} \subseteq {\mathscr L}_{sn}(G)$. Then: $A^{{\mathscr L}}$ is the $\mathscr L$-closure of $A$ in $G$, that is, the intersection of all subgroups in $ {\mathscr L}$ containing $A$ and $A_{{\mathscr L}}$ is the $\mathscr L$-core of $A$ in $G$, that is, the subgroup of $A$ generated by all subgroups of $A$ belonging $\mathscr L$. We say that $A$ is an $N$-${\mathscr L}$-subgroup of $G$ if either $A\in {\mathscr L}$ or $A_{{\mathscr L}} < A < A^{\mathscr L}$ and $N$ avoids every composition factor $H/K$ of $G$ between $A_{{\mathscr L}}$ and $ A^{\mathscr L}$, that is, $N\cap H=N\cap K$. Using this concept, we give new characterizations of soluble and supersoluble finite groups. Some know results are extended.
Keywords: finite group, subgroup lattice, subnormal subgroup, $N$-${\mathscr L}$-subgroup, $N$-subnormal subgroup.
Funding agency Grant number
National Natural Science Foundation of China 12101165
12171126
12311530761
Ministry of Education of the Republic of Belarus 20211778)
Belarusian Republican Foundation for Fundamental Research F24KI-021
The study was supported by the National Natural Science Foundation of China (N. 12101165, 12171126), NNSFC-BRFFR (N. 12311530761), Ministry of Education of the Republic of Belarus (N. 20211778), and the Belarusian Republican Foundation for Fundamental Research (N. F24KI-021).
Received: 18.03.2024
Revised: 11.06.2024
Accepted: 18.06.2024
Document Type: Article
UDC: 512.542
Language: English
Citation: A. -M. Liu, S. Wang, V. G. Safonov, A. N. Skiba, “Lattice characterizations of soluble and supersoluble finite groups”, Proceedings of the Institute of Mathematics of the NAS of Belarus, 32:1 (2024), 17–24
Citation in format AMSBIB
\Bibitem{LiuWanSaf24}
\by A.~-M.~Liu, S.~Wang, V.~G.~Safonov, A.~N.~Skiba
\paper Lattice characterizations of soluble and supersoluble finite groups
\jour Proceedings of the Institute of Mathematics of the NAS of Belarus
\yr 2024
\vol 32
\issue 1
\pages 17--24
\mathnet{http://mi.mathnet.ru/timb379}
Linking options:
  • https://www.mathnet.ru/eng/timb379
  • https://www.mathnet.ru/eng/timb/v32/i1/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Institute of Mathematics of the NAS of Belarus
    Statistics & downloads:
    Abstract page:32
    Full-text PDF :18
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024