Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2023, Volume 31, Number 2, Pages 28–33 (Mi timb370)  

Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups

I. M. Dergacheva, E. A. Zadorozhnyuk, I. P. Shabalina

Belarusian State University of Transport, Gomel'
References:
Abstract: Throughout the article, all groups are finite. We say that a subgroup $A$ of $G$ is $\pi$-quasinormal in $G$, if $A$ is $1 \pi$-subnormal and modular in $G$. We prove that if the group $G$ is $\pi _{0}$-solvable, where $\pi _{0}=\pi (D) $ and $D$ is the $\pi $-special residual of $G$, and $\pi$-quasi-normality is a transitive relation in $G$, then $D$ is an abelian Hall subgroup of odd order in $G$.
Received: 18.12.2023
Document Type: Article
UDC: 512.542
Language: Russian
Citation: I. M. Dergacheva, E. A. Zadorozhnyuk, I. P. Shabalina, “Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups”, Tr. Inst. Mat., 31:2 (2023), 28–33
Citation in format AMSBIB
\Bibitem{DerZadSha23}
\by I.~M.~Dergacheva, E.~A.~Zadorozhnyuk, I.~P.~Shabalina
\paper Finite partially soluble groups with transitive $\pi$-quasinormality relation for subgroups
\jour Tr. Inst. Mat.
\yr 2023
\vol 31
\issue 2
\pages 28--33
\mathnet{http://mi.mathnet.ru/timb370}
Linking options:
  • https://www.mathnet.ru/eng/timb370
  • https://www.mathnet.ru/eng/timb/v31/i2/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
    Statistics & downloads:
    Abstract page:46
    Full-text PDF :17
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024