Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2016, Volume 24, Number 2, Pages 72–90 (Mi timb314)  

Some cases of the polynomial solvability of the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in a graph

V. V. Lepin

Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
References:
Abstract: Let $\mathcal{H}$ be a fixed set of connected graphs. A $\mathcal{H}$-packing of a given graph $G$ is a pairwise vertex-disjoint set of subgraphs of $G,$ each isomorphic to a member of $\mathcal{H}.$ An independent $\mathcal{H}$-packing of a given graph $G$ is an $\mathcal{H}$-packing of $G$ in which no two subgraphs of the packing are joined by an edge of $G.$ Given a graph $G$ with a vertex weight function $\omega_V:~V(G)\to\mathbb{N}$ and an edge weight function and $\omega_E:~E(G)\to\mathbb{N},$ weight of an independent $\{K_1,K_2\}$-packing $S$ in $G$ is $\sum_{v\in U}\omega_V(v)+\sum_{e\in F}\omega_E(e),$ where $U=\bigcup_{H\in\mathcal{S},~H\cong K_1}V(H),$ and $F=\bigcup_{H\in\mathcal{S}}E(H).$ The problem of finding an independent $\{K_1,K_2\}$-packing of maximum weight is considered.
Let $C(G_1,\ldots ,G_{|V(C)|})$ denote a graph formed from a labelled graph $C$ and unlabelled graphs $G_1,\ldots ,G_{|V(C)|},$ replacing every vertex $v_i\in V(C)$ by the graph $G_i,$ and joining the vertices of $V(G_i)$ with all the vertices of those of $V(G_j),$ whenever $v_iv_j\in E(C).$ For unlabelled graphs $C,G_1,\ldots ,G_{|V(C)|},$ let $\Phi_C(G_1,\ldots ,G_{|V(C)|})$ stand for the class of all graphs $C(G_1,\ldots ,G_{|V(C)|})$ taken over all possible orderings of $V(C).$
Let $\mathcal{B,C}$ be classes of prime graphs such that $K_1\in \mathcal{B}\backslash \mathcal{C}.$ A prime inductive class of graphs, $I(\mathcal{B,C}),$ is defined inductively as follows: (1) all graphs from $\mathcal{B}$ belong to $I(\mathcal{B,C}),$ (2) if $C\in \mathcal{C}$ and $\{G_1,\ldots ,G_{|V(C)|}\}\subseteq$ $\subseteq I(\mathcal{B,C}),$ then all graphs from $\Phi_C(G_1,\ldots ,G_{|V(C)|})$ belong to $I(\mathcal{B,C}).$
We present a robust $O(m(m+n))$ time algorithm solving this problem for the graph class $I(\{K_1\}, \mathcal{G}_1\cup \mathcal{G}_2\cup \mathcal{G}_3\cup \mathcal{G}_4),$ where $\mathcal{G}_1$ — prime split graphs, $\mathcal{G}_2$ — prime trees, $\mathcal{G}_3$ — prime unicycle, $\mathcal{G}_3$ — prime co-gem-free graphs.
Funding agency Grant number
Belarusian Republican Foundation for Fundamental Research Ф16РА–003
Ф15МЛД-022
Received: 30.10.2016
Document Type: Article
UDC: 519.1
Language: Russian
Citation: V. V. Lepin, “Some cases of the polynomial solvability of the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in a graph”, Tr. Inst. Mat., 24:2 (2016), 72–90
Citation in format AMSBIB
\Bibitem{Lep16}
\by V.~V.~Lepin
\paper Some cases of the polynomial solvability of the problem of findingan independent $\{K_1,K_2\}$-packing of maximum weight in a graph
\jour Tr. Inst. Mat.
\yr 2016
\vol 24
\issue 2
\pages 72--90
\mathnet{http://mi.mathnet.ru/timb314}
Linking options:
  • https://www.mathnet.ru/eng/timb314
  • https://www.mathnet.ru/eng/timb/v24/i2/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025