Trudy Instituta Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the Institute of Mathematics of the NAS of Belarus:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki, 2016, Volume 24, Number 2, Pages 14–19 (Mi timb308)  

Upper bound for number of integral polynomials of four degree with given order of discriminants

V. I. Bernik, O. N. Kemesh

Belarusian State Agrarian Technical University, Minsk
References:
Abstract: In this paper we propose a new method for estimating the number of top-integral polynomials with given discriminates. We show asymptotically accurate height assessment in the case of polynomials of fourth degree. At the same time we used the methods of the metric theory of Diophantine approximations of dependent variables.
Received: 28.09.2016
Document Type: Article
UDC: 511.42
Language: Russian
Citation: V. I. Bernik, O. N. Kemesh, “Upper bound for number of integral polynomials of four degree with given order of discriminants”, Tr. Inst. Mat., 24:2 (2016), 14–19
Citation in format AMSBIB
\Bibitem{BerKem16}
\by V.~I.~Bernik, O.~N.~Kemesh
\paper Upper bound for number of integral polynomials of four degree with given order of discriminants
\jour Tr. Inst. Mat.
\yr 2016
\vol 24
\issue 2
\pages 14--19
\mathnet{http://mi.mathnet.ru/timb308}
Linking options:
  • https://www.mathnet.ru/eng/timb308
  • https://www.mathnet.ru/eng/timb/v24/i2/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Института математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024